What's so special about 2760

Find the number of ordered triples of integers ( a , b , c ) (a,b,c) that satisfy the equation a ( b c ) 3 + b ( c a ) 3 + c ( a b ) 3 = 2760 a(b-c)^3+b(c-a)^3+c(a-b)^3=2760

Details and assumptions

The order matters: ( 8 , 5 , 15 ) (-8,-5,15) and ( 15 , 8 , 5 ) (15,-8,-5) are considered different solutions.


The answer is 66.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Calvin Lin Staff
May 13, 2014

Note that permuting any two of the numbers a , b , c a,b,c changes the sign of the polynomial a ( b c ) 3 + b ( c a ) 3 + c ( a b ) 3 . a(b-c)^3+b(c-a)^3+c(a-b)^3. In particular, if a = b a=b , then this expression is zero. This suggests that this polynomial is divisible by a b a-b and, similarly, a c a-c and b c . b-c. Indeed, the following beautiful identity is true: a ( b c ) 3 + b ( c a ) 3 + c ( a b ) 3 = ( a b ) ( b c ) ( c a ) ( a + b + c ) a(b-c)^3+b(c-a)^3+c(a-b)^3=(a-b)(b-c)(c-a)(a+b+c) Note that permuting the three numbers a , b , c , a,b,c, cyclically and/or simultaneously changing their signs does not change the value of this expression. Using these transformations, we can change any triple ( a , b , c ) (a,b,c) we are looking for into a triple for which a + b + c > 0 a+b+c>0 and a a is the smallest of the numbers a , b , c . a,b,c. Because a b < 0 , a-b<0, c a > 0 c-a>0 and 2760 > 0 , 2760>0, this implies that b c < 0. b-c<0. Therefore a < b < c a < b < c . Note that a a and/or b b may be negative, as long as a + b + c > 0. a+b+c>0. Each such triple will produce 6 6 solutions by cyclic permutations and sign changes: ( a , b , c , ) , ( c , a , b ) , ( b , c , a ) , ( a , b , c ) , ( c , a , b ) , ( b , c , a ) (a,b,c,),(c,a,b),(b,c,a),(-a,-b,-c),(-c,-a,-b),(-b,-c,-a) Clearly, all solutions are obtained in this manner, and they are distinct, because no two of the numbers a , b , c a,b,c are equal.

Suppose b a = x , c b = y , c a = z b-a=x,\ c-b=y, c-a=z . Then all these numbers are positive, z = x + y z=x+y , and x y z 2760 = 2 3 3 5 23. xyz|2760=2^3\cdot 3\cdot 5 \cdot 23. The number 2760 2760 has 32 32 divisors, listed below in the increasing order: 1 , 2 , 3 , 4 , 5 , 6 , 8 , 10 , 12 , 15 , 20 , 23 , 24 , 30 , 40 , 46 , 60 , 69 , 92 , 1,2,3,4,5,6,8,10,12,15,20,23,24,30,40,46,60,69,92, 115 , 120 , 138 , 184 , 230 , 276 , 345 , 460 , 552 , 690 , 920 , 1380 , 2760 115,120,138,184,230,276,345,460,552,690,920,1380,2760

For the purpose of finding these x , y , z , x,y,z, we can freely switch x x and y y . So suppose x y . x\leq y. Then, because 2760 = x y z x x ( 2 x ) , 2760=xyz \geq x\cdot x\cdot (2x), we get x 1380 3 , x\leq \sqrt[3]{1380}, so x 10. x\leq 10. We consider several cases, depending on what x x can be.

Case 1. x = 1 x=1 . Then y y and z z must be consecutive divisors of 2760 2760 . We have six such triples ( x , y , z ) (x,y,z) with x y x\leq y : ( 1 , 1 , 2 ) , ( 1 , 2 , 3 ) , ( 1 , 3 , 4 ) , ( 1 , 4 , 5 ) , ( 1 , 5 , 6 ) , ( 1 , 23 , 24 ) . (1,1,2),(1,2,3),(1,3,4),(1,4,5),(1,5,6),(1,23,24).

Case 2. x = 2 x=2 . Then y y cannot be even, otherwise z z is also even and either y y or z z is divisible by 4 4 . This would makes x y z xyz divisible by 2 4 , 2^4, which is impossible since x y z xyz divides 2760. 2760. This greatly reduces the number of y y to consider, and we get one triple: ( 2 , 3 , 5 ) . (2,3,5).

Case 3. x = 3. x=3. Then y y is not divisible by 3 3 and y z 920 , yz|920, so y 30 y\leq 30 . We get the following triples: ( 3 , 5 , 8 ) , ( 3 , 20 , 23 ) . (3,5,8),(3,20,23).

Case 4. x = 4. x=4. Then y y must be odd, and y z 690 , yz|690, so y 23. y\leq 23. There are no solutions in this case.

Case 5. x = 5. x=5. Then y y is not divisible by 5 5 , and y z 552 , yz| 552, so y 12. y\leq 12. There are no solutions in this case.

Case 6. x = 6. x=6. Like in Case 2, y y is odd and so is z z . So y z 115 , yz|115, there are no solutions in this case.

Case 7. x = 8. x=8. Then y y is odd and y z 345 , yz|345, so y 15. y\leq 15. We get one triple: ( 8 , 15 , 23 ) . (8,15,23).

Case 8. x = 10. x=10. Then y y is odd and y 276 , y\leq \sqrt{276}, there are no solutions in this case.

Case 9. x = 12. x=12. Then y y is odd and y 230 , y\leq \sqrt{230}, there are no solutions in this case.

All together, we get the following ten choices for ( x , y , z ) , (x,y,z), up to switching x x and y y : ( 1 , 1 , 2 ) , ( 1 , 2 , 3 ) , ( 1 , 3 , 4 ) , ( 1 , 4 , 5 ) , ( 1 , 5 , 6 ) , ( 1 , 23 , 24 ) , (1,1,2),(1,2,3),(1,3,4),(1,4,5),(1,5,6),(1,23,24), ( 2 , 3 , 5 ) , ( 3 , 5 , 8 ) , ( 3 , 20 , 23 ) , ( 8 , 15 , 23 ) (2,3,5),(3,5,8),(3,20,23),(8,15,23)

We consider these cases separately. Most of them are similar, with the notable exceptions of ( 1 , 1 , 2 ) (1,1,2) and ( 1 , 4 , 5 ) . (1,4,5).

If ( x , y , z ) = ( 1 , 1 , 2 ) , (x,y,z)=(1,1,2), then for some integer k k we must have a = k 1 , a=k-1, b = k , b=k, c = k + 1 c=k+1 . The sum a + b + c a+b+c equals 2760 / ( x y z ) = 1380. 2760/(xyz)=1380. This implies k = 460 , k=460, so we get a triple ( a , b , c ) = ( 459 , 460 , 461 ) . (a,b,c)=(459,460,461).

If ( x , y , z ) = ( 1 , 2 , 3 ) (x,y,z)=(1,2,3) or ( x , y , z ) = ( 2 , 1 , 3 ) (x,y,z)=(2,1,3) then for some k k ( a , b , c ) = ( k 1 , k , k + 2 ) (a,b,c)=(k-1,k,k+2) or ( a , b , c ) = ( k 2 , k , k + 1 ) . (a,b,c)=(k-2,k,k+1). In both cases the sum must equal 2760 / 6 = 460. 2760/6=460. Because 460 1 ( m o d 3 ) , 460 \equiv 1 \pmod 3, in order for the number k k to be integer we must have ( a , b , c ) = ( k 1 , k , k + 2 ) . (a,b,c)=(k-1,k,k+2). This gives k = 153 k=153 and a triple ( 152 , 153 , 155 ) . (152,153,155).

Similarly to the last case, for each of the remaining triples except ( 1 , 4 , 5 ) , (1,4,5), exactly one of the two possibilities works modulo 3 3 , and we get the following triples ( a , b , c ) : (a,b,c):

If ( x , y , z ) = ( 1 , 3 , 4 ) , (x,y,z)=(1,3,4), then ( a , b , c ) = ( 75 , 76 , 79 ) . (a,b,c)=(75,76,79).

If ( x , y , z ) = ( 5 , 1 , 6 ) , (x,y,z)=(5,1,6), then ( a , b , c ) = ( 27 , 32 , 33 ) . (a,b,c)=(27,32,33).

If ( x , y , z ) = ( 23 , 1 , 24 ) , (x,y,z)=(23,1,24), then ( a , b , c ) = ( 27 , 32 , 33 ) . (a,b,c)=(27,32,33).

If ( x , y , z ) = ( 3 , 2 , 5 ) , (x,y,z)=(3,2,5), then ( a , b , c ) = ( 28 , 31 , 33 ) . (a,b,c)=(28,31,33).

If ( x , y , z ) = ( 3 , 5 , 8 ) , (x,y,z)=(3,5,8), then ( a , b , c ) = ( 4 , 7 , 12 ) . (a,b,c)=(4,7,12).

If ( x , y , z ) = ( 3 , 20 , 23 ) , (x,y,z)=(3,20,23), then ( a , b , c ) = ( 8 , 5 , 15 ) . (a,b,c)=(-8,-5,15).

If ( x , y , z ) = ( 8 , 15 , 23 ) , (x,y,z)=(8,15,23), then ( a , b , c ) = ( 10 , 2 , 13 ) . (a,b,c)=(-10,-2,13).

The case ( 1 , 4 , 5 ) (1,4,5) is slightly different, because both ( 1 , 4 , 5 ) (1,4,5) and ( 4 , 1 , 5 ) (4,1,5) are possible, producing triples ( 44 , 45 , 49 ) (44,45,49) and ( 43 , 47 , 48 ) . (43,47,48). (What made this case different is that neither of the numbers x , y , z x,y,z is divisible by 3 3 ).

Putting it all together, we have got 11 11 triples, and each of them gives 6 6 solutions by cyclic permutation and sign changes. So the answer is 66. 66.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...