What's that remainder?

What is the remainder when ( 2013 101 ) {2013 \choose 101 } is divided by 101?

Hint:
You may use the fact that 101 is a prime.


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

36 solutions

Sambit Senapati
Jul 15, 2013

My solution uses Wilson's Theorem . Here it is:

Let ( 2013 101 ) = 2013 × 2012 × × 1913 ( 101 ) ! c ( m o d 101 ) {2013 \choose 101}=\frac{2013\times2012\times \ldots \times1913}{(101)!} \equiv c \pmod{101} (where 0 c < 101 0 \leq c<101 )

Multiply both sides of the equation by 100!.

By wilson's theorem 100 ! 1 ( m o d 101 ) 100!\equiv -1 \pmod{101}

2013 × 2012 × ( 1919 101 ) × 1913 c × 100 ! c ( m o d 101 ) \Rightarrow 2013\times2012\ldots \times(\frac{1919}{101})\ldots \times1913 \equiv c\times100! \equiv -c\pmod{101}

2013,2012,. . ., 1920 give remainders 94,93, . . ., 1 respectively when divided by 101.

1913,1914, . . .,1918 give remainders 95,96, . . ., 100 respectively on division by 101.

So, ( 2013 101 ) 94 ! × 19 × 100 × 99 × 95 19 × 100 ! c ( m o d 101 ) {2013\choose101} \equiv 94! \times19 \times100 \times99 \ldots \times95 \equiv 19\times100! \equiv -c \pmod{101} c = 19 \Rightarrow c=19

Therefore ( 2013 101 ) 19 ( m o d 101 ) \boxed{{2013\choose101} \equiv 19 \pmod{101}}

Nice solution. Note that you didn't need to use Wilson's Theorem at all, since you already pointed out that the cancellation will occur. This is very similar to the proof of Lucas Theorem.

Here's a vote boost from me :)

Calvin Lin Staff - 7 years, 11 months ago

Log in to reply

Yes, you are right. :)

Sambit Senapati - 7 years, 11 months ago

An excellent method. Like it more than Lucas.

Ruskin Bond - 7 years, 11 months ago

I think Lucas theorem is an overkill. This solution is really nice :)

Sri Kanth - 7 years, 11 months ago

No Lucas!Nice!

Yunhao King - 7 years, 10 months ago

\Rightarrow

Abul Ahmed - 7 years, 10 months ago

Whoa. NICE.

Jean Lee - 7 years, 10 months ago

nice solution

PSN murthy - 5 years, 6 months ago

Wonderfully well thought of..

S Aditya - 4 years, 4 months ago

One of the best solutions I have seen in my life

Prabhnoor Singh - 11 months, 3 weeks ago
Hero P.
Jul 15, 2013

An elementary proof without resorting to Lucas' Theorem follows. First, we claim for all primes p p , positive integers m m , and integers 0 n p 1 0 \le n \le p-1 , ( m p + n p ) ( m p p ) ( m o d p ) . \binom{mp+n}{p} \equiv \binom{mp}{p} \pmod p. For n = 0 n = 0 , the claim is trivially true. For n 1 n \ge 1 , ( m p + n p ) = m p + n ( m 1 ) p + n ( m p + n 1 p ) = p ( m 1 ) p + n ( m p + ( n 1 ) p ) + ( m p + ( n 1 ) p ) . \begin{aligned} \binom{mp+n}{p} &= \frac{mp+n}{(m-1)p+n} \binom{mp+n-1}{p} \\ &= \frac{p}{(m-1)p+n} \binom{mp+(n-1)}{p} + \binom{mp+(n-1)}{p}. \end{aligned} But since the LHS is an integer, p p is prime, and ( m 1 ) p + n (m-1)p + n cannot divide p p under the given conditions, it follows that it must divide ( m p + ( n 1 ) p ) \binom{mp+(n-1)}{p} . So the first term on the RHS is divisible by p p . Hence ( m p + n p ) ( m p + ( n 1 ) p ) ( m o d p ) , \binom{mp+n}{p} \equiv \binom{mp+(n-1)}{p} \pmod p, and induction on n n proves our claim. Next, we claim that for positive integers m m , ( m p p ) m ( m o d p ) . \binom{mp}{p} \equiv m \pmod p. For m = 1 m = 1 , the claim is again trivial: ( p p ) = 1 \binom{p}{p} = 1 . For m > 1 m > 1 , we write ( m p p ) = m p ( m 1 ) p ( m p 1 p ) = m m 1 ( ( m 1 ) p + ( p 1 ) p ) . \binom{mp}{p} = \frac{mp}{(m-1)p} \binom{mp-1}{p} = \frac{m}{m-1} \binom{(m-1)p + (p-1)}{p}. Thus by the first claim with n = p 1 n = p-1 , ( m 1 ) ( m p p ) m ( ( m 1 ) p + ( p 1 ) p ) m ( ( m 1 ) p p ) ( m o d p ) . \begin{aligned} (m-1) \binom{mp}{p} &\equiv m \binom{(m-1)p+(p-1)}{p} \\ &\equiv m \binom{(m-1)p}{p} \pmod p. \end{aligned} By induction on m m and recalling that a x a y ( m o d p ) ax \equiv ay \pmod p implies x y ( m o d p ) x \equiv y \pmod p for prime p p , the result immediately follows. Therefore, we have proved ( m p + n p ) m ( m o d p ) , \binom{mp+n}{p} \equiv m \pmod p, and with the choice m = 19 , p = 101 , n = 94 m = 19, p = 101, n = 94 , we find ( 2013 101 ) \binom{2013}{101} leaves a remainder of 19 \boxed{19} when divided by 101 101 .

Muhammad Al Kahfi
Jul 14, 2013

First of all, let we see the Lucas theorem : http://ecademy.agnesscott.edu/~lriddle/ifs/siertri/LucasProof.htm

Now, since 2013 = 19.10 1 1 + 94. 2013 = 19. 101^1 + 94. 101 = 1.10 1 1 + 0 101 = 1. 101^1 + 0

Then, by Lucas theorem above, we obtain : m 1 = 19 m_1 = 19 m 0 = 94 m_0 = 94 n 1 = 1 n_1 = 1 n 2 = 0 n_2 = 0

( 2013 101 ) ( 19 1 ) . ( 94 0 ) 19.1 19 ( m o d 101 ) \binom{2013}{101} \equiv \binom{19}{1} . \binom{94}{0} \equiv 19 . 1 \equiv \boxed{19} \pmod{101}

wow amazing i did not know that there was an existing theorem like that

Rindell Mabunga - 7 years, 10 months ago

Woah same way but I had to refer to the wiki page !!!

abc xyz - 5 years, 2 months ago

you should change your 19.10 1 1 + 94 19.101^1 + 94 and 1.10 1 1 + 0 1.101^1 + 0 into 19 10 1 1 + 94 19*101^1+94 and 1 10 1 1 + 0 1*101^1 + 0 respectively.

Vishwa Iyer - 7 years, 11 months ago

Log in to reply

In my opinion, \cdot is better for denoting multiplication than . or *, but that's just me.

Jimmy Kariznov - 7 years, 11 months ago

( 2013 101 ) = 2013 2012 . . . 1919 . . . 1913 101 100 . . . 1 \binom{2013}{101} = \frac{2013\cdot2012\cdot...\cdot1919\cdot...\cdot1913}{101\cdot100\cdot...\cdot1} . We see that 1919 101 = 19 \frac{1919}{101}=19 .

Considering the rest of the numerator (without the 1919 1919 ) m o d 101 \bmod101 , we have each of the integers between 1 1 and 100 100 , inclusive, present. That is, 2013 2012 . . . 1920 1918 . . . 1913 2013\cdot2012\cdot...\cdot1920\cdot1918\cdot...\cdot1913\equiv 94 93 . . . 1 100 . . . 95 94\cdot93\cdot...\cdot1\cdot100\cdot...\cdot95\equiv 100 ! 1 m o d 101 100!\equiv-1\mod101 , since for any prime p p , ( p 1 ) ! 1 m o d p (p-1)!\equiv-1\mod{p} by Wilson's Theorem (for more information, see http://en.wikipedia.org/wiki/Wilson's_theorem). Similarly, looking at the rest of the denominator (without the 101 101 ), we have 100 99 . . . 1 100 ! 1 m o d 101 100\cdot99\cdot...\cdot1\equiv100!\equiv-1\mod101 .

With these in mind, we can solve our problem: ( 2013 101 ) \binom{2013}{101}\equiv 1919 101 2013 2012 . . . 1920 1918 . . . 1913 100 99 . . . 1 \frac{1919}{101}\cdot\frac{2013\cdot2012\cdot...\cdot1920\cdot1918\cdot...\cdot1913}{100\cdot99\cdot...\cdot1}\equiv 19 1 1 19 m o d 101 19\cdot\frac{-1}{-1}\equiv19\mod101 . Therefore, the remainder when ( 2013 101 ) \binom{2013}{101} is divided by 101 101 is 19 \fbox{19} .

Kiriti Mukherjee
Jul 14, 2013

According to lucas theorem it can be solved.. since 2013 = 19.101 + 94. 2013 = 19.101 + 94. 101 = 1.101 + 0 101 = 1.101 + 0 applying lucas theorem- ( 2013 101 ) ( 19 1 ) . ( 94 0 ) 19 ( m o d 101 ) \binom{2013}{101} ≡ \binom{19}{1} . \binom{94}{0} ≡ \boxed{19} (mod 101)

Jimmy Kariznov
Jul 14, 2013

Note that 2013 = 19 101 + 94 2013 = 19 \cdot 101 + 94 and 101 = 1 101 + 0 101 = 1 \cdot 101 + 0 . Then, since 101 101 is prime, by Lucas' Theorem, we have:

( 2013 101 ) ( 19 1 ) ( 94 0 ) 19 1 19 ( m o d 101 ) \dbinom{2013}{101} \equiv \dbinom{19}{1} \cdot \dbinom{94}{0} \equiv 19 \cdot 1 \equiv 19 \pmod{101} .

George Williams
Jul 15, 2013

This is a nice solution, the source of the corresponding exercise is Apostol's. For all p p , we have that:

( n p ) n p ( m o d p ) {n \choose p} \equiv \left\lfloor \frac{n}{p} \right\rfloor \pmod{p}

Note that this is a special case of Lucas theorem, which has already been described here.

Wow!!!!I like this one!

Yunhao King - 7 years, 10 months ago

I can prove this without Lucas therorem.
Inside p consecutive integers k,k-1,...k--p+1,there must have an integer can be divided by p,we let this integer be k-i. 0 =<i<=p-1;then we have
[k/p]=[k-i+i/p]=k-i/p+[i/p]=k-i/p
Let Q=(k k-1 k-2 ... k-p+1)/k-i;
Then we have Q≡(p-1)!(mod p);
And Q [k/p]=Q (k-i)/p=(p-1)! {k \choose p};
(p-1)!
[k/p]≡Q [k/p]≡(p-1)! {k \choose p}(mod p);
As p is a prime number;(p-1)! can not be divided by p;as a result
{k \choose p}= k/p






Yunhao King - 7 years, 10 months ago

Do you have the name of this theorem?

A L - 7 years, 10 months ago

I did the same as you did , But I didn't know that this result is the special case of Lucas Theorem (which i never heard)

Mayank Kaushik - 7 years, 11 months ago
Daniel Chiu
Jul 15, 2013

( 2013 101 ) = 2013 ! 1912 ! 101 ! \binom{2013}{101}=\frac{2013!}{1912!101!} We must find this modulo 11. 2013 ! 1912 ! 101 ! i = 1 94 i 19 i = 1 6 i 100 ! ( m o d 101 ) \frac{2013!}{1912!101!}\equiv\frac{\prod_{i=1}^{94} i \cdot 19\cdot \prod_{i=1}^6 -i}{100!}\pmod{101} Notice the top is equal to 100 ! 19 100!\cdot 19 modulo 101. Now, the 100 ! 100! cancel, and the answer is 19 \boxed{19}

Oscar Harmon
Jul 15, 2013

We can see that ( 2013 101 ) = n = 1 101 n 2014 n {2013 \choose 101}=-\prod_{n=1}^{101}\frac{n-2014}{n} . Now, we could rearrange this to be n = 1 101 ( n 2014 ) n = 1 101 n n = 1 101 ( n + 6 ) n = 1 101 n ( m o d 101 ) -\frac{\prod_{n=1}^{101} (n-2014)}{\prod_{n=1}^{101} n} \equiv -\frac{\prod_{n=1}^{101} (n+6)}{\prod_{n=1}^{101} n} \pmod{101} , but these are not precisely equivalent since 1919 101 0 0 \frac{-1919}{101}\neq\frac{0}{0} . So, we can factor this out initially and proceed: 1919 101 n = 1 94 ( n + 6 ) n = 96 101 ( n + 6 ) n = 1 100 n 1919 101 n = 7 100 n n = 102 107 n n = 1 100 n 1919 101 n = 1 6 n n = 7 100 n n = 1 100 n 1919 101 19 ( m o d 101 ) -\frac{-1919}{101}\frac{\prod_{n=1}^{94} (n+6) \prod_{n=96}^{101} (n+6)}{\prod_{n=1}^{100} n} \equiv -\frac{-1919}{101}\frac{\prod_{n=7}^{100} n \prod_{n=102}^{107} n}{\prod_{n=1}^{100} n} \equiv -\frac{-1919}{101}\frac{\prod_{n=1}^{6} n \prod_{n=7}^{100} n}{\prod_{n=1}^{100} n} \equiv \frac{1919}{101} \equiv 19 \pmod{101}

Indeed, you have to be careful with what 0 0 ( m o d 101 ) \frac{0}{0} \pmod{ 101} means. Thanks for pointing that out!

Calvin Lin Staff - 7 years, 11 months ago
Xuming Liang
Jul 19, 2013

Here's a solution using the simple lemma:

a x a y ( m o d b ) ax\equiv ay \pmod b \implies x y ( m o d b ) x\equiv y \pmod b when a , b a,b are relatively prime.

Proof: a x a y ( m o d b ) ax\equiv ay \pmod b \implies a ( x y ) = b m a(x-y)=bm for some integer m m , \implies b a ( x y ) b\mid a(x-y) , since a , b a,b are relatively prime, thus it's clear that b x y b\mid x-y \implies x y ( m o d b ) x\equiv y \pmod b . Q.E.D

Now consider the number 100 ! ( 2013 101 ) 100!\binom {2013}{101} , which is equal to 2013 2012 . . . 1920 19 1918 1917 . . . 1913 94 93 . . . 1 2013*2012*...*1920*19*1918*1917*...*1913\equiv 94*93*...*1 19 100 99 . . . 95 100 ! 19 ( m o d 101 ) *19*100*99*...*95\equiv 100!*19 \pmod {101} , thus we have 100 ! ( 2013 101 ) 100 ! 19 ( m o d 101 ) 100!\binom {2013}{101}\equiv 100!*19 \pmod {101} . Since 101 101 is prime, thus 101 101 and 100 ! 100! are relatively prime. By the lemma above we have 100 ! ( 2013 101 ) 100 ! 19 ( m o d 1 ) 01 100!\binom {2013}{101}\equiv 100!*19 \pmod 101 \implies ( 2013 101 ) 19 ( m o d 101 ) \binom {2013}{101}\equiv 19 \pmod {101} , which means that the remainder is 19 19 .

Abhishek Pushp
Jul 20, 2013

it can be solved by wid lucas theorem now, 2013=19.101^1+94. 101=1.101^1+0 by Lucas theorem : m1=19 m0=94 n1=1 n2=0 C(2013 101)≡C(19 1).C(94 0) ≡19(mod 101) SO 19 IS ANSWER

Atonu Mukherjee
Jul 14, 2013

According to lucas theorem it can be solved.. since 2013 = 19.101 + 94. 2013 = 19.101 + 94. 101 = 1.101 + 0 101 = 1.101 + 0 applying lucas theorem- ( 2013 101 ) ( 19 1 ) . ( 94 0 ) 19 ( m o d 101 ) \binom{2013}{101} ≡ \binom{19}{1} . \binom{94}{0} ≡ 19 (mod 101)

Ang Yan Sheng
Jul 20, 2013

Note that 1920 1 ( m o d 101 ) 1921 2 ( m o d 101 ) 2013 94 ( m o d 101 ) 1913 95 ( m o d 101 ) 1914 96 ( m o d 101 ) 1918 100 ( m o d 101 ) \begin{aligned} 1920&\equiv1\pmod{101}\\ 1921&\equiv2\pmod{101}\\ &\vdots\\ 2013&\equiv94\pmod{101}\\ 1913&\equiv95\pmod{101}\\ 1914&\equiv96\pmod{101}\\ &\vdots\\ 1918&\equiv100\pmod{101} \end{aligned} Hence ( 2013 101 ) = ( 2013 ) ( 2012 ) ( 1913 ) ( 1 ) ( 2 ) ( 101 ) = 1919 101 1920 1 1921 2 2013 94 1913 95 1918 100 ( 19 ) ( 1 ) ( 1 ) ( 1 ) 19 ( m o d 101 ) \begin{aligned}\binom{2013}{101}&=\frac{(2013)(2012)\cdots(1913)}{(1)(2)\cdots(101)}\\ &=\frac{1919}{101}\frac{1920}{1}\frac{1921}{2}\cdots\frac{2013}{94}\frac{1913}{95}\cdots\frac{1918}{100}\\ &\equiv(19)(1)(1)\cdots(1)\\ &\equiv\boxed{19}\pmod{101}\end{aligned} (Note: all the divisions are valid (mod 101) because the denominators of every fraction, except the first, are coprime to 101.)

Hesto Plowkeeper
Jul 16, 2013

Without resorting to fancy combinatoric theorems, we use generating function (1+x)^2013, and consider the coefficient of term x^101, which is 2013C101. Under mod 101, (1+x)^101=1+x^101, for all the coefficients in the middle are divisible by 101. Hence (1+x)^2013 = (1+x^101)^19 (1+x)^94, of which the coefficient of x^101 is 19 by binomial expansion. Namely, the answer is 19.

Shivam Agrawal
Sep 29, 2017

Only use of-

(n/p) = [n/p] (mod p)

(2013/101)= [2013/101] mod 101

and [2013/101]=19

That's the answer

Feras Muki
Sep 1, 2016
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include <cstdio>
#include <iostream>
using namespace std;

const int mod = 101;
int memo[2020][2020];

// Evaluate nCr using recursive dynamic program
int choose(int n, int r){
    if(n == 0) return 1;
    if(r == 0 || r == n) return 1;
    if(memo[n][r] != 0) return memo[n][r]-1;
    int ans = choose(n-1, r) + choose(n-1, r-1);
    ans %= mod;
    memo[n][r] = ans+1;
    return ans;
}

int main(){
    cout << choose(2013, 101) << endl;
    return 0;
}

I know it's cheating but.. ahh whatever.

Joseph Hardwick
Nov 22, 2015

We can prove this using only the fact that elements of Pascal's triangle are the sum of the two elements above.

We have ( 2013 101 ) = ( 2012 100 ) + ( 2012 101 ) {2013 \choose 101} = {2012 \choose 100} + {2012 \choose 101}

Notice that the first term on the LHS is divisible by 101, so we can turn attention to the second. This reasoning is valid until we reach:

( 1919 101 ) = ( 1918 100 ) + ( 1918 101 ) {1919 \choose 101} = {1918 \choose 100} + {1918 \choose 101}

However, we can deal with the first term as follows:

( 1918 100 ) = ( 1917 100 ) + ( 1917 99 ) {1918 \choose 100} = {1917 \choose 100} + {1917 \choose 99}

Again, the first term on the right is divisible by 101, and turning attention to the second, and repeating, we eventually end up with:

( 1820 2 ) = ( 1819 2 ) + 1819 1 ( m o d 101 ) {1820 \choose 2} = {1819 \choose 2} + 1819 \equiv 1 \pmod{101}

Continuing in this way, we see that the problematic terms are ( 1918 100 ) , ( 1817 100 ) , . . . , ( 100 100 ) . {1918 \choose 100}, {1817 \choose 100},..., {100 \choose 100}.

There are 19 such terms, all of which are equal 1 ( m o d 101 ) 1 \pmod{101}

Jorge Fernández
Jul 12, 2015

2013 1912 1 1912 \frac{2013\cdot\dots1912}{1\cdot\dots 1912} , top and bottom is a complete residue system, the multiples of 11 11 are 19 101 19\cdot 101 and 101 101 . They make 19 19 when dividing. The rest of the complete residue system cancels out m o d 101 \bmod 101 .

Patrick Corn
May 20, 2014

We have ( 2013 101 ) = 2013 1913 101 ! = 2013 1920 19 1918 1913 100 ! \binom{2013}{101} = \frac{2013 \cdot \cdots 1913}{101!} = \frac{2013 \cdot \cdots 1920 \cdot 19 \cdot 1918 \cdot \cdots 1913}{100!} after canceling a factor of 101 101 from top and bottom.

The numbers 2013 , 2012 , , 1921 , 1920 , 1918 , 1917 , , 1913 2013, 2012, \ldots, 1921, 1920, 1918, 1917, \ldots, 1913 left in the numerator run through all of the nonzero congruence classes mod 101 101 exactly once. So, modulo 101 101 , the numerator is congruent to 19 100 ! 19 \cdot 100! . Since 101 101 is prime, 100 ! 100! is invertible mod 101 101 , so it makes sense to rewrite:

( 2013 101 ) 19 ( 2013 1920 1918 1913 ) ( 100 ! ) 1 \binom{2013}{101} \equiv 19 (2013 \cdot \cdots 1920 \cdot 1918 \cdot \cdots 1913)(100!)^{-1}

19 ( 100 ! ) ( 100 ! ) 1 19 \equiv 19(100!)(100!)^{-1} \equiv 19 mod 101 101 .

Rahul Nahata
May 20, 2014

According to Lucas' theorem since 2013 = 19.101 + 94. 2013 = 19.101 + 94. and 101 = 1.101 + 0 101 = 1.101 + 0 Therefore
( 2013 101 ) ( 19 1 ) . ( 94 0 ) 19 ( m o d 101 ) \binom{2013}{101} ≡ \binom{19}{1} . \binom{94}{0} ≡ 19 (\mod{101})

Ayush Saini
May 20, 2014

My solution uses Wilson's theorem. Here it is:

Let (2013101)=2013×2012×…×1913(101)!≡c(mod101) (where 0≤c<101)

Multiply both sides of the equation by 100!.

By wilson's theorem 100!≡−1(mod101) ⇒2013×2012…×(1919101)…×1913≡c×100!≡−c(mod101) 2013,2012,. . ., 1920 give remainders 94,93, . . ., 1 respectively when divided by 101.

1913,1914, . . .,1918 give remainders 95,96, . . ., 100 respectively on division by 101.

So, (2013101)≡94!×19×100×99…×95≡19×100!≡−c(mod101) ⇒c=19 Therefore (2013101)≡19(mod101)

Since 2013=19.101+94 then according to the lucas theorem we have ${2013 \choose 101} \equiv {19 \choose 1}{94 \choose 0} \equiv 19 \pmod{101}$ Ans: 19.

Douglas Zare
May 20, 2014

( 2013 101 ) = 2013 2012 . . . . 1919 . . . 1913 101 100 99 98 . . . 1 = 1919 101 1920 1 1921 2 1922 3 . . . 2013 94 1913 95 . . . 1918 100 \begin{aligned}{2013 \choose 101} &=& \frac{2013 * 2012 * .... * 1919 *...* 1913}{101 * 100 * 99 * 98 * ... * 1} \newline &=& \frac{1919}{101} * \frac{1920}{1}\frac{1921}{2}\frac{1922}{3}...\frac{2013}{94} \frac{1913}{95}...\frac{1918}{100}\end{aligned}

The first term simplifies: 1919 101 = 19 \frac{1919}{101} = 19 . The other terms cancel in the arithmetic of the integers mod 101, since each numerator is congruent to the denominator mod 101. So, the product is 19 mod 101.

By Lucas' Theorem, since 101 is prime, this binomial coefficient is equal to a bunch of stuff choose 0 (which is just 1) times 19 choose 1 (modulo 101). This is clearly 19 mod 101.

Thomas Baxter
Jul 21, 2013

The question is equivalent to, "What is ( 2013 201 ) \begin{pmatrix}2013\\201\end{pmatrix} equivalent to modulo 101 101 , as a number from 0 0 to 100 100 inclusive?"

View this combination as the product 2013 2012 1913 101 100 1 = 2013 1920 1918 1913 100 1 1919 101 \frac{2013\cdot 2012\cdots1913}{101\cdot100\cdots1} = \frac{2013\cdots1920\cdot1918\cdots1913}{100\cdots1}\cdot\frac{1919}{101} .

Note that the first fraction on the right-hand side is equivalent to 1 1 modulo 101 101 , because the top and bottom each include a number equivalent to a a modulo 101 101 for each integer 1 a 100 1\leq a\leq 100 , so their modular products are equal and non-zero.

Then, modulo 101 101 , the combination is equivalent to 1919 101 = 19 \frac{1919}{101}=19 .

Jason Martin
Jul 20, 2013

We know ( 2013 101 ) 2013 \choose 101 = 2013 × 2012 × . . . × 1913 101 × 100 × . . . × 2 × 1 =\frac {2013 \times 2012 \times... \times 1913}{101 \times 100 \times... \times2 \times 1} . In mod 101, we can treat division by 100, 99, 98, etc as multiplication by their multiplicative inverses. Thus, we have ( 2013 × 2012 × . . . × 1913 ) × ( 10 0 1 × 9 9 1 × . . . × 2 1 ) 101 \frac{(2013 \times 2012 \times... \times 1913) \times (100^{-1} \times 99^{-1} \times... \times 2^{-1})} {101} . Each value from 1913 to 2013 is a value mod 101. The only value that is divisible by 101 is 1919. Thus, everything cancels until we're left with 1919 101 = 19 \frac {1919} {101} =19 .

Christopher Boo
Jul 20, 2013

This is a typical problem to be solved by Lucas Theorem. (The proof and explanation of Lucas Theorem is too complicated, I will only write the way to tackle this problem, for more information you can Google it)

2013 = 19 101 + 94 2013=19\cdot101+94

101 = 1 101 + 0 101=1\cdot101+0

Next,

( 2013 101 ) ( m o d 101 ) ( 19 1 ) ( 94 0 ) ( m o d 101 ) 19 ( m o d 101 ) {2013 \choose 101}\pmod{101} \equiv {19 \choose 1}{94 \choose 0}\pmod{101} \equiv 19 \pmod{101}

So, the remainder of ( 2013 101 ) {2013 \choose 101} when divided by 101 101 is 19 19 .

Tran Trung Nguyen
Jul 20, 2013

2013=19.101^1+94. 101=1.101^1+0 by Lucas theorem : m1=19 m0=94 n1=1 n2=0 C(2013 101)≡C(19 1).C(94 0) ≡19(mod 101) SO 19 IS ANSWER

Evan Chien
Jul 19, 2013

2013=19.101^1+94

101=1.101^1+0

by Lucas theorem:

m1=19

m0=94

n1=1

n2=0

C(2013 101)≡C(19 1).C(94 0)

≡19(mod 101) So 19 is the answer

Utsav Singhal
Jul 18, 2013

It means.....2013 c 101 = 2013! _ _ __ 101! (2013-101)! solve this and divide it by 101 which will give the remainder 19

2013=19.101^1+94. 101=1.101^1+0 by Lucas theorem : m1=19 m0=94 n1=1 n2=0 C(2013 101)≡C(19 1).C(94 0) ≡19(mod 101) SO 19 IS ANSWER

Ajay Kumar
Jul 18, 2013

by seeing the question we will aply Lucas theorem now 2013=19.1011+94. 101=1.1011+0 Then, by Lucas theorem above, we obtain : m1=19 m0=94 n1=1 n2=0 (2013101)≡(191).(940)≡19.1≡19(mod101)

Tan Likai
Jul 17, 2013

Since ( 2013 101 ) = 2013 2012 1913 101 100 1 {2013 \choose 101} = \frac{2013 \cdot 2012 \cdot \ldots \cdot 1913}{101 \cdot 100 \cdot \ldots \cdot 1} . Note that f r a c 1919101 = 19 frac{1919}{101} = 19 . Then note that the numbers from 1913 to 2013 exculding 1919 are 1 to 100 modulo 101. By Wilson's Theorem, 2013 / c h o o s e 101 1919 100 99 \ldot 1 101 100 99 \ldot 1 1919 101 1 1 19 ( m o d 101 ) {2013 /choose 101} \equiv \frac{1919 \cdot 100 \cdot 99 \cdot \ldot \cdot 1}{101 \cdot 100 \cdot 99 \cdot \ldot \cdot 1} \equiv \frac{1919}{101} \cdot \frac{-1}{-1} \equiv 19 \pmod {101}

Abhishek Kumar
Jul 16, 2013

According to lucas theorem it can be solved.. since 2013 = 19.101 + 94. 2013 = 19.101 + 94. 101 = 1.101 + 0 101 = 1.101 + 0 applying lucas theorem- ( 2013 101 ) ( 19 1 ) . ( 94 0 ) 19 ( m o d 101 ) \binom{2013}{101} ≡ \binom{19}{1} . \binom{94}{0} ≡ \boxed{19} (mod 101)

Debjit Mandal
Jul 16, 2013

I am going to use the result that, if p is a prime and m and n are positive integers satisfying m=ap+r , n=bp+s where 0\leq r,s<p, then {m \choose n}≡{a \choose b}{r \choose s}\pmod{p}. Here, m=2013= 101 \times 19 + 94, and n=101 \times 1 + 0. So, {2013 \choose 101}≡{19 \choose 1}{94 \choose 0}≡19 \times 1≡19\pmod{101}. So, the answer is 19.

Harsa Mitra
Jul 16, 2013

Using Lucas Theorem (http://en.wikipedia.org/wiki/Lucas'_theorem)

2013=19.101+94. 101=1.101+0

Using Lucas theorem:-

we get, 19 (mod101)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...