Why don't you simplify those fractions?

Geometry Level 2

k = 1 145 [ sin ( 2 π k 8 ) i cos ( 2 π k 14 ) ] = 1 a i cos ( π b ) . \displaystyle \sum_{k=1}^{145} \left [ \sin \left ( \frac {2\pi k}{8} \right ) - i \ \cos \left ( \frac {2\pi k}{14} \right ) \right ] = \frac {1}{\sqrt{a}} - i \cos \left ( \frac {\pi}{b} \right ). Find the sum of the positive integers a a and b . b.

Note: i = 1 . i = \sqrt{-1}.


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 20, 2015

k = 1 145 [ sin ( 2 π k 8 ) i cos ( 2 π k 14 ) ] = k = 1 145 sin ( k π 4 ) i k = 1 145 cos ( k π 7 ) \displaystyle \sum_{k=1}^{145} {\left[ \sin{\left(\frac{2\pi k}{8}\right)}-i\cos { \left( \frac {2\pi k}{14}\right)}\right] } = \sum_{k=1}^{145} {\sin{\left(\frac{k\pi}{4}\right)}}- i\sum_{k=1}^{145} {\cos { \left( \frac {k\pi}{7}\right)}}

We note that k = 1 145 sin ( 2 π k 8 ) \displaystyle \sum_{k=1}^{145} {\sin{\left(\frac{2\pi k}{8}\right)}} and k = 1 145 cos ( 2 π k 14 ) \displaystyle \sum_{k=1}^{145} {\cos { \left( \frac {2\pi k}{14}\right)}} are cyclical and are equal to:

k = 1 145 sin ( 2 π k 8 ) = { 0 when n mod 8 = 0 k = 1 n mod 8 sin ( 2 π k 8 ) when n mod 8 0 \displaystyle \sum_{k=1}^{145} {\sin{\left(\frac{2\pi k}{8}\right)}} = \begin{cases} 0 & \text{when } n \text{ mod } 8 = 0 \\ \displaystyle \sum_{k=1}^{n \text{ mod }8} {\sin{\left(\frac{2\pi k}{8}\right)}} & \text{when } n \text{ mod } 8 \ne 0 \end{cases}

k = 1 145 cos ( 2 π k 14 ) = { 0 when n mod 14 = 0 k = 1 n mod 14 cos ( 2 π k 14 ) when n mod 14 0 \displaystyle \sum_{k=1}^{145} {\cos{\left(\frac{2\pi k}{14}\right)}} = \begin{cases} 0 & \text{when } n \text{ mod } 14 = 0 \\ \displaystyle \sum_{k=1}^{n \text{ mod }14} {\cos{\left(\frac{2 \pi k}{14}\right)}} & \text{when } n \text{ mod } 14 \ne 0 \end{cases}

For n = 145 145 mod 8 = 1 145 mod 14 = 5 n=145\quad \Rightarrow 145 \text{ mod }8 = 1 \quad \Rightarrow 145 \text{ mod }14 = 5 , therefore,

k = 1 145 [ sin ( 2 π k 8 ) i cos ( 2 π k 14 ) ] = k = 1 1 sin ( k π 4 ) i k = 1 5 cos ( k π 7 ) = sin π 4 i ( cos π 7 + cos 2 π 7 + cos 3 π 7 + cos 4 π 7 + cos 5 π 7 ) = sin π 4 i ( cos π 7 + cos 2 π 7 + cos 3 π 7 cos 3 π 7 cos 2 π 7 ) = sin π 4 i cos π 7 = 1 2 i cos π 7 \displaystyle \sum_{k=1}^{145} {\left[ \sin{\left(\frac{2\pi k}{8}\right)}-i\cos { \left( \frac {2\pi k}{14}\right)}\right] } = \sum_{k=1}^{1} {\sin{\left(\frac{k\pi}{4}\right)}}- i\sum_{k=1}^{5} {\cos { \left( \frac {k\pi}{7}\right)}} \\ = \sin{\dfrac{\pi}{4}} -i \left( \cos {\dfrac {\pi}{7}} + \cos {\dfrac {2\pi}{7}} + \cos {\dfrac {3\pi}{7}} + \cos {\dfrac {4\pi}{7}} +\cos {\dfrac {5\pi}{7}} \right) \\ = \sin{\dfrac{\pi}{4}} -i \left( \cos {\dfrac {\pi}{7}} + \cos {\dfrac {2\pi}{7}} + \cos {\dfrac {3\pi}{7}} - \cos {\dfrac {3\pi}{7}} -\cos {\dfrac {2\pi}{7}} \right) \\ = \sin{\dfrac{\pi}{4}} -i\cos {\dfrac {\pi}{7}} = \dfrac{1}{\sqrt{2}} -i\cos {\dfrac {\pi}{7}}

a + b = 2 + 7 = 9 \Rightarrow a + b = 2 + 7 = \boxed{9}

Excellent solution

Kyle Finch - 6 years, 2 months ago

Simply Brilliant !!!

Parth Lohomi - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...