What's the Angle?

Geometry Level 4

In the above diagram, B D = B F = D F = E C = D A = 1 BD = BF = DF = EC = DA = 1 , find m B E F m\angle{BEF} (in degrees).


The answer is 52.532688789.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Nibedan Mukherjee
Mar 22, 2020

nice approach sir..

nibedan mukherjee - 1 year, 2 months ago

Log in to reply

Thank you.

Niranjan Khanderia - 1 year, 2 months ago
Chew-Seong Cheong
Mar 21, 2020

Redrawing the diagram to scale for better visualization. After angle chasing, we note that B F E = 9 0 \angle BFE = 90^\circ . Let E F = a EF=a . By Pythagorean theorem B E 2 = B F 2 + E F 2 = 1 + a 2 BE^2 = BF^2+EF^2 = 1+a^2 , B F = 1 + a 2 \implies BF = \sqrt{1+a^2} .

As B C G \triangle BCG and E C H \triangle ECH are similar, we have:

B C C G = E C C H 1 + a 2 + 1 3 2 = 1 a 2 a ( 1 + a 2 + 1 ) = 3 a 1 + a 2 = 3 a a 2 + a 4 = 3 2 3 a + a 2 a 4 + 2 3 a 3 = 0 \begin{aligned} \frac {BC}{CG} & = \frac {EC}{CH} \\ \frac {\sqrt{1+a^2}+1}{\frac {\sqrt 3}2} & = \frac 1{\frac a2} \\ a(\sqrt{1+a^2} + 1) & = \sqrt 3 \\ a\sqrt{1+a^2} & = \sqrt 3 - a \\ a^2 + a^4 & = 3 - 2\sqrt 3 a + a^2 \\ a^4 + 2\sqrt 3 a - 3 & =0 \end{aligned}

Solving for the equation (I used numerical method), we get a 0.766420937 a \approx 0.766420937 . Let D C B = θ \angle DCB = \theta , then m B E F = 3 0 + θ = 3 0 + sin 1 ( a 2 ) 52.5 m\angle BEF = 30^\circ + \theta = 30^\circ + \sin^{-1} \left(\dfrac a2\right) \approx \boxed{52.5}^\circ .

Nice way of solution.

Niranjan Khanderia - 1 year, 2 months ago

Log in to reply

Glad that you like it.

Chew-Seong Cheong - 1 year, 2 months ago
Rocco Dalto
Mar 20, 2020

B D F \triangle{BDF} is an equilateral triangle B D F = D F B = D B F = 6 0 \implies \angle{BDF} = \angle{DFB} = \angle{DBF} = 60^{\circ} and A B AB is a straight line A D F = 12 0 \implies \angle{ADF} = 120^{\circ}

Let B A F = θ \angle{BAF} = \theta since A D F \triangle{ADF} is an isosceles triangle with A D = D F = 1 D A F = θ AD = DF = 1 \implies \angle{DAF} = \theta and vertical angles are congruent E F D = θ \implies \angle{EFD} = \theta .

Let A F = m AF = m

Using the law of cosines on A D F m 2 = 2 2 cos ( 12 0 ) = 3 m = 3 \triangle{ADF} \implies m^2 = 2 - 2\cos(120^{\circ}) = 3 \implies m = \sqrt{3}

Using the law of sines on A D F \triangle{ADF} , where m = 3 m = \sqrt{3} \implies

1 sin ( θ ) = 3 sin ( 12 0 ) = 2 sin ( θ ) = 1 2 θ = 3 0 \dfrac{1}{\sin(\theta)} = \dfrac{\sqrt{3}}{\sin(120^{\circ})} = 2 \implies \sin(\theta) = \dfrac{1}{2} \implies \theta = 30^{\circ}

A E AE is a straight line B F E = 9 0 \implies \angle{BFE} = 90^{\circ} and B C BC is a straight line F E C = 18 0 β E C F = β 3 0 \implies \angle{FEC} = 180^{\circ} - \beta \implies \angle{ECF} = \beta - 30^{\circ} .

Let B E = x BE = x and F E = y FE = y .

Using right B E F y = x 2 1 , cos ( β ) = y x = x 2 1 x \triangle{BEF} \implies y = \sqrt{x^2 - 1}, \cos(\beta) = \dfrac{y}{x} = \dfrac{\sqrt{x^2 - 1}}{x} and sin ( β ) = 1 x \sin(\beta) = \dfrac{1}{x} .

Using the law of sines on F E C \triangle{FEC} \implies

1 sin ( 3 0 ) = y sin ( β 3 0 ) 2 = y sin ( β 3 0 ) \dfrac{1}{\sin(30^{\circ})} = \dfrac{y}{\sin(\beta - 30^{\circ})} \implies 2 = \dfrac{y}{\sin(\beta - 30^{\circ})} \implies

y = 3 sin ( β ) cos ( β ) = x 2 1 y = \sqrt{3}\sin(\beta) - \cos(\beta) = \sqrt{x^2 - 1} \implies 3 x x 2 1 x = x 2 1 \dfrac{\sqrt{3}}{x} - \dfrac{\sqrt{x^2 - 1}}{x} = \sqrt{x^2 - 1} \implies

3 = x 2 1 ( x + 1 ) 3 = ( x 2 1 ) ( x 2 + 2 x + 1 ) = x 4 + 2 x 3 2 x 1 \sqrt{3} = \sqrt{x^2 - 1}(x + 1) \implies 3 = (x^2 - 1)(x^2 + 2x + 1) = x^4 + 2x^3 - 2x - 1 \implies

x 4 + 2 x 3 2 x 4 = 0 x^4 + 2x^3 - 2x - 4 = 0

By inspection x = 2 x = -2 is a root of x 4 + 2 x 3 2 x 4 = 0 x^4 + 2x^3 - 2x - 4 = 0 and dividing x 4 + 2 x 3 2 x 4 x^4 + 2x^3 - 2x - 4 by x + 2 x + 2 we obtain:

x 4 + 2 x 3 2 x 4 = ( x + 2 ) ( x 3 2 ) = 0 x > 0 x = 2 1 3 x^4 + 2x^3 - 2x - 4 = (x + 2)(x^3 - 2) = 0 \:\ x > 0 \implies x = 2^{\frac{1}{3}} \implies sin ( β ) = 1 2 1 3 \sin(\beta) = \dfrac{1}{2^{\frac{1}{3}}}

β = 52.53268878 9 \implies \beta = \boxed{52.532688789^{\circ}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...