What's The Angle?

Geometry Level pending

In the above diagram, circle O O is inscribed in square A B C D ABCD . If the area of the red region A R = π 2 8 A_{R} = \dfrac{\pi^2}{8} and P Q = 1 \overline{PQ} = 1 , find the measure of P M Q \angle{PMQ} (in degrees)


The answer is 14.760926556951.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rocco Dalto
Feb 10, 2021

Let O P = r O Q = r 1 \overline{OP} = r \implies \overline{OQ} = r - 1 and let O M = r , m P M Q = α \overline{OM} = r, m\angle{PMQ} = \alpha and m Q M O = β m\angle{QMO} = \beta .

tan ( β ) = r 1 r \tan(\beta) = \dfrac{r - 1}{r} and α + β = 4 5 α = 4 5 β \alpha + \beta = 45^{\circ} \implies \alpha = 45^{\circ} - \beta

tan ( α ) = tan ( 4 5 β ) = 1 tan ( β ) 1 + tan ( β ) = 1 2 r 1 \implies \tan(\alpha) = \tan(45^{\circ} - \beta) = \dfrac{1 - \tan(\beta)}{1 + \tan(\beta)} = \dfrac{1}{2r - 1}

and

A R = r 2 π 4 r 2 = 4 π 4 r 2 = π 2 8 A_{R} = r^2 - \dfrac{\pi}{4}r^2 = \dfrac{4 - \pi}{4}r^2 = \dfrac{\pi^2}{8} r = π 2 ( 4 π ) \implies r = \dfrac{\pi}{\sqrt{2(4 - \pi)}} \implies

tan ( β ) = π 2 ( 4 π ) π tan ( α ) = 2 ( 4 π ) 2 π 2 ( 4 π ) \tan(\beta) = \dfrac{\pi - \sqrt{2(4 - \pi)}}{\pi} \implies \tan(\alpha) = \dfrac{\sqrt{2(4 - \pi)}}{2\pi - \sqrt{2(4 - \pi)}}

α = arctan ( 2 ( 4 π ) 2 π 2 ( 4 π ) ) 14.76092655695 1 \implies \alpha = \arctan(\dfrac{\sqrt{2(4 - \pi)}}{2\pi - \sqrt{2(4 - \pi)}} ) \approx \boxed{14.760926556951^{\circ}} .

Chew-Seong Cheong
Feb 11, 2021

Let the radius of the circle be r r . Then the side length of the square is 2 r 2r and its area A = 4 r 2 A_\square = 4r^2 and A R = A π r 2 4 = ( 4 π ) r 4 = π 2 8 r = π 8 2 π 2.3976631135 A_R = \dfrac {A_\square - \pi r^2}4 = \dfrac {(4-\pi)r}4 = \dfrac {\pi^2}8 \implies r = \dfrac \pi{\sqrt{8-2\pi}} \approx 2.3976631135 . Then

P M Q = P M O Q M O = 4 5 tan 1 r 1 r 4 5 30.23907344 3 14.8 \angle PMQ = \angle PMO - \angle QMO = 45^\circ - \tan^{-1} \frac {r-1}r \approx 45^\circ - 30.239073443^\circ \approx \boxed{14.8}^\circ

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...