What's the Area of the Region ?

Level pending

If the area A A^{*} of the shaded region in Rectangle A B C D ABCD above with diagonal A C AC and inscribed semicircle whose diameter is B C BC can be represented as

A = a b ( a b c arcsin ( a a c ) ) A^{*} = {a^b}(\dfrac{a * b}{c} - \arcsin(\dfrac{a^{a}}{c})) , where a , b a,b and c c are coprime positive integers, find a + b + c a + b + c .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Nov 24, 2019

Using the diagram above the equation of line A C AC is y = 1 2 x y = \dfrac{1}{2}x or x = 2 y x = 2y and for the circle centered at (4,4) with have ( x 4 ) 2 + ( y 4 ) 2 = 16 (x - 4)^2 + (y - 4)^2 = 16

x = 2 y ( 2 y 4 ) 2 + ( y 4 ) 2 = 16 5 y 2 24 y + 16 = 0 x = 2y \implies (2y - 4)^2 + (y - 4)^2 = 16 \implies 5y^2 - 24y + 16 = 0 \implies

y = 4 5 , y = 4 y = \dfrac{4}{5}, y = 4 Since we already have ( 8 , 4 ) P ( 8 5 , 4 5 ) (8,4) \implies P(\dfrac{8}{5},\dfrac{4}{5})

So the area of the pink region is A 1 = 1 2 ( 4 5 ) ( 8 5 ) = 16 25 A_{1} = \dfrac{1}{2}(\dfrac{4}{5})(\dfrac{8}{5}) = \boxed{\dfrac{16}{25}} .

( x 4 ) 2 + ( y 4 ) 2 = 16 x = 4 16 ( y 4 ) 2 (x - 4)^2 + (y - 4)^2 = 16 \implies x = 4 - \sqrt{16 - (y - 4)^2} which is the portion of the circle needed.

The area of the blue region is A 2 = 4 5 4 ( 4 16 ( y 4 ) 2 ) d y A_{2} = \displaystyle\int_{\dfrac{4}{5}}^{4} (4 - \sqrt{16 - (y - 4)^2}) dy

For I = 16 ( y 4 ) 2 d x I = \displaystyle\int \sqrt{16 - (y - 4)^2} dx

Let y 4 = 4 sin ( θ ) d y = 4 cos ( θ ) I = 8 ( 1 + cos ( 2 θ ) ) d θ y - 4 = 4\sin(\theta) \implies dy = 4\cos(\theta) \implies I = 8\displaystyle\int (1 + \cos(2\theta)) d\theta

= 8 ( θ + sin ( θ ) cos ( θ ) ) = 8 ( arcsin ( y 4 4 ) + ( y 4 ) 16 ( y 4 ) 2 16 ) = 8(\theta + \sin(\theta)\cos(\theta)) = 8(\arcsin(\dfrac{y - 4}{4}) + \dfrac{(y - 4)\sqrt{16 - (y - 4)^2}}{16})

4 5 4 ( 16 ( y 4 ) 2 ) d y = \implies \displaystyle\int_{\dfrac{4}{5}}^{4} (\sqrt{16 - (y - 4)^2}) dy = 8 arcsin ( 4 5 ) + 96 25 8\arcsin(\dfrac{4}{5}) + \dfrac{96}{25}

A 2 = 64 5 96 25 8 arcsin ( 4 5 ) = 224 25 8 arcsin ( 4 5 ) \implies A_{2} = \dfrac{64}{5} - \dfrac{96}{25} - 8\arcsin(\dfrac{4}{5}) = \boxed{\dfrac{224}{25} - 8\arcsin(\dfrac{4}{5})}

\therefore The total area A = A 1 + A 2 = 48 5 8 arcsin ( 4 5 ) = A^{*} = A_{1} + A_{2} = \dfrac{48}{5} - 8\arcsin(\dfrac{4}{5}) = 8 ( 6 / 5 arcsin ( 4 5 ) ) = 2 3 ( 2 3 5 arcsin ( 2 2 5 ) ) = 8(6/5 - \arcsin(\dfrac{4}{5})) = 2^3(\dfrac{2 * 3}{5} - \arcsin(\dfrac{2^2}{5})) = a b ( a b c arcsin ( a a c ) ) \boxed{{a^b}(\dfrac{a * b}{c} - \arcsin(\dfrac{a^{a}}{c}))} .

Note: For A 2 A_{2} you could have used:

A 2 = 0 8 5 ( 4 16 ( x 4 ) 2 4 5 ) d x = A_{2} = \displaystyle\int_{0}^{\dfrac{8}{5}} (4 - \sqrt{16 - (x - 4)^2} - \dfrac{4}{5}) dx = 0 8 5 ( 16 5 16 ( x 4 ) 2 ) d x \displaystyle\int_{0}^{\dfrac{8}{5}} (\dfrac{16}{5} - \sqrt{16 - (x - 4)^2}) dx

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...