What's The Area? What's The Conics?

Calculus Level pending

Using the general form a x 2 + b x y + c y 2 + d x + y = 0 ax^2 + bxy + cy^2 + dx + y = 0 , find the conic that goes thru the points ( 0 , 1 ) , ( 1 2 , 1 2 ) , ( 1 2 , 1 2 ) , ( 1 4 , 0 ) (0,1), (\dfrac{1}{2},\dfrac{1}{2}), (\dfrac{-1}{2},\dfrac{1}{2}), (\dfrac{1}{4},0) and ( 0 , 0 ) (0,0) .

Find the parabola y = a x 2 + b x + c y = ax^2 + bx + c that goes thru the points ( 2 15 , 15 1 2 15 ) , ( 2 15 , 15 + 1 2 15 ) (\dfrac{2}{\sqrt{15}}, \dfrac{\sqrt{15} - 1}{2\sqrt{15}}), (\dfrac{-2}{\sqrt{15}}, \dfrac{\sqrt{15} + 1}{2\sqrt{15}}) and ( 0 , 0 ) (0,0) .

If the area A A of the region bounded by the above conic(below the line y = 2 x 4 y = \dfrac{2 - x}{4} ) and the given parabola can be expressed as A = b π a b a b b c A = \dfrac{b\pi - a^b}{ab\sqrt{bc}} , where a , b a,b and c c are coprime positive integers, find a + b + c a + b + c .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 14, 2019

Let a x 2 + b x y + c y 2 + d x + y = 0 ax^2 + bxy + cy^2 + dx + y = 0

Using the points ( 0 , 1 ) , ( 1 2 , 1 2 ) , ( 1 2 , 1 2 ) , ( 1 4 , 0 ) (0,1), (\dfrac{1}{2},\dfrac{1}{2}), (\dfrac{-1}{2},\dfrac{1}{2}), (\dfrac{1}{4},0) and ( 0 , 0 ) (0,0) we obtain the system:

a + b + c + 2 d + 2 = 0 a + b + c + 2d + 2 = 0

a b + c 2 d + 2 = 0 a - b + c - 2d + 2 = 0

c + 1 = 0 c + 1 = 0

a + 4 d = 0 a + 4d = 0

a + c + 2 = 0 , c = 1 , a = 4 d d = 1 4 a = 1 \implies a + c + 2 = 0, c = -1, a = -4d \implies d = \dfrac{1}{4} \implies a = -1 and b = 1 2 b = \dfrac{-1}{2} 4 x 2 + 2 x y + 4 y 2 x 4 y = 0 \implies 4x^2 + 2xy + 4y^2 - x - 4y = 0 , since b 2 4 a c < 0 b^2 - 4ac < 0 \implies the conic is an ellipse..

To find the area we need to solve for y y obtaining:

y = 1 4 ( ± 4 15 x 2 ( x 2 ) ) y = \dfrac{1}{4}(\pm\sqrt{4 - 15x^2} - (x - 2))

We only need g ( x ) = 1 4 ( 4 15 x 2 ( x 2 ) ) g(x) = \dfrac{1}{4}(-\sqrt{4 - 15x^2} - (x - 2)) , which is the portion of the ellipse below the line y = 2 x 4 y = \dfrac{2 - x}{4} .

For the parabola y = a x 2 + b x + c y = ax^2 + bx + c that goes thru the points ( 2 15 , 15 1 2 15 ) , ( 2 15 , 15 + 1 2 15 ) (\dfrac{2}{\sqrt{15}}, \dfrac{\sqrt{15} - 1}{2\sqrt{15}}), (\dfrac{-2}{\sqrt{15}}, \dfrac{\sqrt{15} + 1}{2\sqrt{15}}) and ( 0 , 0 ) (0,0) we obtain:

c = 0 c = 0

4 15 a + 2 15 b = 15 1 2 15 \dfrac{4}{15}a + \dfrac{2}{\sqrt{15}}b =\dfrac{\sqrt{15} -1}{2\sqrt{15}}

4 15 a 2 15 b = 15 + 1 2 15 \dfrac{4}{15}a - \dfrac{2}{\sqrt{15}}b =\dfrac{\sqrt{15} +1}{2\sqrt{15}}

a = 15 8 \implies a = \dfrac{15}{8} and b = 1 4 y = 15 x 2 2 x 8 b = \dfrac{-1}{4} \implies y = \dfrac{15x^2 - 2x}{8} .

To find the points of intersection for the two curves let f ( x ) = g ( x ) 2 x 15 x 2 = 2 ( 4 15 x 2 + x 2 ) ( 4 15 x 2 ) 2 = 4 ( 4 15 x 2 ) f(x) = g(x) \implies 2x - 15x^2 = 2(\sqrt{4 - 15x^2} + x - 2) \implies (4 - 15x^2)^2 = 4(4 - 15x^2) \implies

15 x 2 ( 15 x 2 4 ) = 0 x = 0 , x = ± 2 15 15x^2(15x^2 - 4) = 0 \implies x = 0, x = \pm\dfrac{2}{\sqrt{15}} .

The area A = 2 15 0 f ( x ) g ( x ) d x + 0 2 15 f ( x ) g ( x ) d x ) = 1 8 2 15 2 15 15 x 2 2 x + 2 ( 4 15 x 2 + x 2 ) d x A = \int_{\dfrac{-2}{\sqrt{15}}}^{0} f(x) - g(x) dx + \int_{0}^{\dfrac{-2}{\sqrt{15}}} f(x) - g(x) dx ) = \dfrac{1}{8}\int_{\dfrac{-2}{\sqrt{15}}}^{\dfrac{2}{\sqrt{15}}} 15x^2 - 2x + 2(\sqrt{4 - 15x^2} + x - 2) dx

Letting 15 x = 2 sin ( θ ) d x = 2 15 cos ( θ ) \sqrt{15}x = 2\sin(\theta) \implies dx = \dfrac{2}{\sqrt{15}}\cos(\theta) \implies

A = 1 8 ( 4 π 15 16 15 + 16 3 15 ) = 3 π 8 6 15 = A = \dfrac{1}{8}(\dfrac{4\pi}{\sqrt{15}} - \dfrac{16}{\sqrt{15}} + \dfrac{16}{3\sqrt{15}}) = \dfrac{3\pi - 8}{6\sqrt{15}} = 3 π 2 3 2 3 3 5 = b π a b a b b c \dfrac{3\pi - 2^3}{2 * 3\sqrt{3 * 5}} = \dfrac{b\pi - a^b}{ab\sqrt{bc}} a + b + c = 10 \implies a + b + c = \boxed{10} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...