What's the Distance?

Level pending

If A B \overleftrightarrow{AB} is tangent to the curves y = x 1 / 4 y = x^{1/4} and y = x 4 y = -x^4 at points A A and B B and C D \overleftrightarrow{CD} is tangent to the curves y = x y = \sqrt{x} and y = x 2 y = -x^2 at points C C and D D , show A B \overleftrightarrow{AB} and C D \overleftrightarrow{CD} are parallel and find the perpendicular distance between the parallel lines A B \overleftrightarrow{AB} and C D \overleftrightarrow{CD} above to six decimal places.


The answer is 0.157310.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
May 1, 2018

Let f ( x ) = x 4 { f(x) = -x^4 } and g ( x ) = x 1 / 4 { g(x) = x^{1/4} \implies }

d d x ( f ( x ) ) x = a = 4 a 3 \dfrac{d}{dx}(f(x))|_{x = a} = -4a^3 and d d x ( g ( x ) ) x = b = 1 4 b 3 4 \dfrac{d}{dx}(g(x))|_{x = b} = \dfrac{1}{4b^{\frac{3}{4}}} \implies 4 a 3 = 1 4 b 3 4 a = 1 1 6 1 3 b 1 4 -4a^3 = \dfrac{1}{4b^{\frac{3}{4}}} \implies a = \dfrac{-1}{16^{\frac{1}{3}}b^\frac{1}{4}}

Using A : ( a , a 4 ) = ( 1 1 6 1 3 b 1 4 , 1 1 6 4 3 b ) A: (a,-a^4) = (\dfrac{-1}{16^{\frac{1}{3}}b^\frac{1}{4}},\dfrac{-1}{16^{\frac{4}{3}}b}) and B : ( b , b 1 4 ) B: (b,b^{\frac{1}{4}}) \implies

The slope m = 1 6 4 3 b 5 4 + 1 ( 16 b 3 4 ) ( 1 6 1 3 b 5 4 + 1 ) = 1 4 b 3 4 m = \dfrac{16^{\frac{4}{3}} b^{\frac{5}{4}} + 1}{(16b^{\frac{3}{4}})(16^{\frac{1}{3}} b^{\frac{5}{4}} + 1)} = \dfrac{1}{4b^{\frac{3}{4}}} \implies 4 8 3 b 5 4 + 1 = 4 5 3 b 5 4 + 4 4^{\frac{8}{3}}b^{\frac{5}{4}} + 1 = 4^{\frac{5}{3}}b^{\frac{5}{4}} + 4 \implies 4 5 3 b 5 4 = 1 b = 1 4 4 3 a = 1 4 1 3 4^{\frac{5}{3}}b^{\frac{5}{4}} = 1 \implies b = \dfrac{1}{4^{\frac{4}{3}}} \implies a = \dfrac{-1}{4^{\frac{1}{3}}}

A : ( 1 4 1 3 , 1 4 4 3 ) \implies A: (\dfrac{-1}{4^{\frac{1}{3}}}, \dfrac{-1}{4^{\frac{4}{3}}}) and B : ( 1 4 4 3 , 1 4 1 3 ) B: (\dfrac{1}{4^{\frac{4}{3}}},\dfrac{1}{4^{\frac{1}{3}}})

Using points A A and B m A B = 1 y = x + 3 4 4 3 B \implies m_{AB} = 1 \implies y = x + \dfrac{3}{4^{\frac{4}{3}}}

Now let f ( x ) = x 2 { f(x) = -x^2 } and g ( x ) = x { g(x) = \sqrt{x} \implies }

d d x ( f ( x ) ) x = a = 2 a \dfrac{d}{dx}(f(x))|_{x = a} = -2a and d d x ( g ( x ) ) x = b = 1 2 b \dfrac{d}{dx}(g(x))|_{x = b} = \dfrac{1}{2 \sqrt{b}} \implies

2 a = 1 2 b a = 1 4 b -2a = \dfrac{1}{2 \sqrt{b}} \implies a = -\dfrac{1}{4 \sqrt{b}}

D : ( a , a 2 ) = ( 1 4 b , 1 16 b ) D: (a,-a^2) = (-\dfrac{1}{4 \sqrt{b}} , -\dfrac{1}{16 b}) and C : ( b , b ) C: (b, \sqrt{b} ) \implies

slope m = 1 2 b = 1 4 b ( 16 b 3 2 + 1 4 b 3 2 + 1 ) m = \dfrac{1}{2 \sqrt{b}} = \dfrac{1}{4 \sqrt{b}} (\dfrac{16 b^\frac{3}{2} + 1}{4 b^\frac{3}{2} + 1}) \implies

16 b 3 2 + 1 = 8 b 3 2 + 2 8 b 3 2 = 1 b = 1 4 16 b^\frac{3}{2} + 1 = 8 b^\frac{3}{2} + 2 \implies 8 b^\frac{3}{2} = 1 \implies b = \dfrac{1}{4}

\implies slope m D C = 1 m_{DC} = 1 and a = 1 2 a = -\dfrac{1}{2}

Using D : ( 1 2 , 1 4 ) y = x + 1 4 D: (-\dfrac{1}{2},-\dfrac{1}{4}) \implies y = x + \dfrac{1}{4}

y = x + 1 4 y = x + \dfrac{1}{4} is tangent to g ( x ) g(x) at C : ( 1 4 , 1 2 ) C: (\dfrac{1}{4} , \dfrac{1}{2}) and f ( x ) f(x) at D : ( 1 2 , 1 4 ) D: (-\dfrac{1}{2},-\dfrac{1}{4})

To find the perpendicular distance between A B \overleftrightarrow{AB} and A B \overleftrightarrow{AB} .

For A B \overleftrightarrow{AB} , y = x + 3 4 4 3 y = x + \dfrac{3}{4^{\frac{4}{3}}}

For C D \overleftrightarrow{CD} , y = x + 1 4 y = x + \dfrac{1}{4}

Let D F \overleftrightarrow{DF} be the line perpendicular to y = x + 1 4 y = x + \dfrac{1}{4} and y = x + 3 4 4 3 y = x + \dfrac{3}{4^{\frac{4}{3}}}

D F \overleftrightarrow{DF} pass thru the point ( 1 2 , 1 4 ) (\dfrac{-1}{2},\dfrac{-1}{4}) with slope m = 1 m_{\perp} = -1 \implies

y = x 3 4 y = -x - \dfrac{3}{4} represents line D F \overleftrightarrow{DF}

Find the point of intersection for the lines:

y = x + 3 4 4 3 y = x + \dfrac{3}{4^{\frac{4}{3}}}

y = x 3 4 y = -x - \dfrac{3}{4}

x = 3 8 ( 1 + 1 4 1 3 ) \implies x = \dfrac{-3}{8}(1 + \dfrac{1}{4^{\frac{1}{3}}}) and y = 3 8 ( 1 1 4 1 3 ) y = \dfrac{-3}{8}(1 - \dfrac{1}{4^{\frac{1}{3}}})

\implies the distance D F = 1 8 4 4 3 + 9 4 2 3 24 2 4 1 3 . 157310 DF = \dfrac{1}{8}\sqrt{\dfrac{4^{\frac{4}{3}} + 9 * 4^{\frac{2}{3}} - 24}{2 * 4^{\frac{1}{3}}}} \approx \boxed{.157310} after simplifying.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...