What's the length of the chord?

Geometry Level 3

In the diagram above, the inscribed C A D \angle{CAD} has a measure of 6 0 60 ^{\circ} and A B \overline{AB} bisects C A D \angle{CAD} so that m C A B = m B A D = 3 0 m\angle{CAB} = m\angle{BAD} = 30^{\circ} and A C = a \overline{AC} = a and A D = a + 2 \overline{AD} = a + 2 .

Find the value of a a for which A B = 6 3 \overline{AB} = 6\sqrt{3} .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 17, 2021

Since A C B D ACBD is a cyclic quadrilateral , then B C D = B A D = 3 0 \angle BCD = \angle BAD = 30^\circ and C D B = C A B = 3 0 \angle CDB = \angle CAB = 30^\circ . And B C D \triangle BCD is isosceles. Let B C = D B = b BC = DB = b . Then D C = 2 b cos 3 0 = 3 b DC = 2b \cos 30^\circ = \sqrt 3b . By Ptolemy's theorem

A C B D + B C A D = A B C D a b + b ( a + 2 ) = 6 3 3 b Divide both sides by b a + a + 2 = 18 a = 8 \begin{aligned} AC \cdot BD + BC \cdot AD & = AB \cdot CD \\ ab + b(a+2) & = 6\sqrt 3 \cdot \sqrt 3 b & \small \blue{\text{Divide both sides by }b} \\ a + a + 2 & = 18 \\ \implies a & = \boxed 8 \end{aligned}

Hosam Hajjir
Mar 17, 2021

It is straight forward to find that A C B + A D B = 18 0 \angle ACB + \angle ADB = 180^{\circ} , and that B C = B D \overline{BC} = \overline{BD} . Hence, we can rotate the lower triangle A B D \triangle ABD about point B B by 12 0 120^{\circ} clockwise to obtain an isosceles triangle having the two equal sides = 6 3 = 6\sqrt{3} and the base angle 3 0 30^{\circ} . The base is a + ( a + 2 ) = 2 ( a + 1 ) a + (a + 2) = 2 (a + 1) , and therefore, a + 1 = 6 3 sin 6 0 = 9 a + 1 = 6 \sqrt{3} \sin 60^{\circ} = 9 , hence a = 8 a = 8 .

Rocco Dalto
Mar 16, 2021

In right A C E : A E = a cos ( 3 0 ) = 3 2 \triangle{ACE}: \:\ \:\ \overline{AE} = a\cos(30^{\circ}) = \dfrac{\sqrt{3}}{2} and h = C E = a 2 h = \overline{CE} = \dfrac{a}{2}

Using law of cosines on A C D \triangle{ACD} with included C A D C D 2 = a 2 + 2 a + 4 \angle{CAD} \implies \overline{CD}^2 = a^2 + 2a + 4

Using law of cosines on C B D \triangle{CBD} with included C B D \angle{CBD} \implies

a 2 + 2 a + 4 = 2 x 2 ( 1 + cos ( 6 0 ) ) = 3 x 2 x = a 2 + 2 a + 4 3 a^2 + 2a + 4 = 2x^2(1 + \cos(60^{\circ})) = 3x^2 \implies x = \sqrt{\dfrac{a^2 + 2a + 4}{3}}

and h = a 2 = a 2 + 2 a + 4 3 sin ( θ ) sin ( θ ) = a 2 a 2 + 2 a + 4 3 h = \dfrac{a}{2} = \sqrt{\dfrac{a^2 + 2a + 4}{3}}\sin(\theta) \implies \sin(\theta) = \dfrac{a}{2}\sqrt{\dfrac{a^2 + 2a + 4}{3}} \implies

cos ( θ ) = a 2 + 8 a + 16 2 a 2 + 2 a + 4 E B = a 2 + 2 a + 4 3 cos ( θ ) = \cos(\theta) = \dfrac{\sqrt{a^2 + 8a + 16}}{2\sqrt{a^2 + 2a + 4}} \implies \overline{EB} = \sqrt{\dfrac{a^2 + 2a + 4}{3}}\cos(\theta) =

a 2 + 8 a + 16 2 3 A B = E B + A E = \dfrac{\sqrt{a^2 + 8a + 16}}{2\sqrt{3}} \implies \overline{AB} = \overline{EB} + \overline{AE} = 1 2 3 ( a 2 + 8 a + 16 + 3 a ) = 6 3 \dfrac{1}{2\sqrt{3}}(\sqrt{a^2 + 8a + 16} + 3a) = 6\sqrt{3}

a 2 + 8 a + 16 = 3 ( 12 a ) a 2 + 8 a + 16 = 1296 216 a + 9 a 2 \implies \sqrt{a^2 + 8a + 16} = 3(12 - a) \implies a^2 + 8a + 16 = 1296 - 216a + 9a^2 \implies

8 ( a 2 28 a + 160 ) = 0 ( a 20 ) ( a 8 ) = 0 8(a^2 - 28a + 160) = 0 \implies (a - 20)(a - 8) = 0 and a < 12 a = 8 a < 12 \implies \boxed{a = 8} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...