Given that x,y and z are positive real numbers.
If m represents the maximum value of x 5 + y 5 + z 5 x y 2 z 2 , find the value of ( 5 m ) 5 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Absolutely same
Since x, y and z are positive,
x 5 + y 5 + z 5 x y 2 z 2 is positive too.
So you can find the minimum value of multiplicative inverse of x 5 + y 5 + z 5 x y 2 z 2 and the multiplicative inverse of the value will be the maximum value of x 5 + y 5 + z 5 x y 2 z 2 .
x y 2 z 2 x 5 + y 5 + z 5
= y 2 z 2 x 4 + x z 2 y 3 + x y 2 z 3
= y 2 z 2 x 4 + 2 x z 2 y 3 + 2 x z 2 y 3 + 2 x y 2 z 3 + 2 x y 2 z 3
≥ 5 5 y 2 z 2 x 4 2 x z 2 y 3 2 x z 2 y 3 2 x y 2 z 3 2 x y 2 z 3
= 5 1 6 5
so the minimum value of x y 2 z 2 x 5 + y 5 + z 5 = 5 1 6 5
thus m= 5 5 1 6 , ( 5 m ) 5 =16
First notice that x cannot be zero.
So, divide the numerator and denominator by x 5 to get
1 + ( x y ) 5 + ( x z ) 5 ( x y ) 2 ( x z ) 2
now put x y = a , x z = b
by A.M - G.M inequality,
1 + 2 a 5 + 2 a 5 + 2 b 5 + 2 b 5 ≥ 5 . 5 ( 1 6 a 1 0 . b 1 0 ) = 5 . ( 5 1 6 a 2 . b 2 )
So,
1 + a 5 + b 5 a 2 . b 2 ≤ ( 5 5 1 6 ) . ( a 2 . b 2 a 2 . b 2 ) = 5 5 1 6
Thus, our answer is 1 6 .
Problem Loading...
Note Loading...
Set Loading...
Due to AM-GM: 5 1 6 x y 2 z 2 = 5 2 ⋅ 2 ⋅ 2 ⋅ 2 x 5 y 1 0 z 1 0 ≤ 5 x 5 + 2 y 5 + 2 y 5 + 2 z 5 + 2 z 5 = 5 x 5 + y 5 + z 5 ⇒ x 5 + y 5 + z 5 x y 2 z 2 ≤ 5 5 1 6 = m Thus ( 5 m ) 5 = ( 5 ⋅ 5 5 1 6 ) 5 = 1 6