What's the maximum value?

Algebra Level 5

Given that x,y and z are positive real numbers.

If m m represents the maximum value of x y 2 z 2 x 5 + y 5 + z 5 \frac{xy^{2}z^{2}}{x^{5}+y^{5}+z^{5}} , find the value of ( 5 m ) 5 (5m)^{5} .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Andrea Gallese
Aug 28, 2014

Due to AM-GM: x y 2 z 2 16 5 = x 5 y 10 z 10 2 2 2 2 5 x 5 + y 5 2 + y 5 2 + z 5 2 + z 5 2 5 = x 5 + y 5 + z 5 5 x y 2 z 2 x 5 + y 5 + z 5 16 5 5 = m \frac{xy^2z^2}{\sqrt[5]{16}}=\sqrt[5]{\frac{x^5y^{10}z^{10}}{2\cdot 2\cdot 2\cdot 2}}\leq \frac{x^5+\frac{y^5}{2}+\frac{y^5}{2}+\frac{z^5}{2}+\frac{z^5}{2}}{5}=\frac{x^5+y^5+z^5}{5} \\ \Rightarrow\; \frac{xy^2z^2}{x^5+y^5+z^5}\leq\frac{\sqrt[5]{16}}{5}=m Thus ( 5 m ) 5 = ( 5 16 5 5 ) 5 = 16 (5m)^5 = (5\cdot \frac{\sqrt[5]{16}}{5})^5 = \boxed{16}

Absolutely same

Department 8 - 5 years, 8 months ago
Lee Young Kyu
Aug 27, 2014

Since x, y and z are positive,

x y 2 z 2 x 5 + y 5 + z 5 \frac{xy^{2}z^{2}}{x^{5}+y^{5}+z^{5}} is positive too.

So you can find the minimum value of multiplicative inverse of x y 2 z 2 x 5 + y 5 + z 5 \frac{xy^{2}z^{2}}{x^{5}+y^{5}+z^{5}} and the multiplicative inverse of the value will be the maximum value of x y 2 z 2 x 5 + y 5 + z 5 \frac{xy^{2}z^{2}}{x^{5}+y^{5}+z^{5}} .

x 5 + y 5 + z 5 x y 2 z 2 \frac { { x }^{ 5 }+{ y }^{ 5 }+{ z }^{ 5 } }{ x{ y }^{ 2 }{ z }^{ 2 } }

= x 4 y 2 z 2 + y 3 x z 2 + z 3 x y 2 =\frac { { x }^{ 4 } }{ { y }^{ 2 }{ z }^{ 2 } } +\frac { { y }^{ 3 } }{ x{ z }^{ 2 } } +\frac { { z }^{ 3 } }{ x{ y }^{ 2 } }

= x 4 y 2 z 2 + y 3 2 x z 2 + y 3 2 x z 2 + z 3 2 x y 2 + z 3 2 x y 2 =\frac { { x }^{ 4 } }{ { y }^{ 2 }{ z }^{ 2 } } +\frac { { y }^{ 3 } }{ 2x{ z }^{ 2 } } +\frac { { y }^{ 3 } }{ 2x{ z }^{ 2 } } +\frac { { z }^{ 3 } }{ 2x{ y }^{ 2 } } +\frac { { z }^{ 3 } }{ 2x{ y }^{ 2 } }

5 x 4 y 2 z 2 y 3 2 x z 2 y 3 2 x z 2 z 3 2 x y 2 z 3 2 x y 2 5 \ge 5\sqrt [ 5 ]{ \frac { { x }^{ 4 } }{ { y }^{ 2 }{ z }^{ 2 } } \frac { { y }^{ 3 } }{ 2x{ z }^{ 2 } } \frac { { y }^{ 3 } }{ 2x{ z }^{ 2 } } \frac { { z }^{ 3 } }{ 2x{ y }^{ 2 } } \frac { { z }^{ 3 } }{ 2x{ y }^{ 2 } } }

= 5 16 5 =\frac { 5 }{ \sqrt [ 5 ]{ 16 } }

so the minimum value of x 5 + y 5 + z 5 x y 2 z 2 \frac { { x }^{ 5 }+{ y }^{ 5 }+{ z }^{ 5 } }{ x{ y }^{ 2 }{ z }^{ 2 } } = 5 16 5 \frac { 5 }{ \sqrt [ 5 ]{ 16 } }

thus m= 16 5 5 \frac { \sqrt [ 5 ]{ 16 } }{ 5 } , ( 5 m ) 5 (5m)^{5} =16

Rohit Kumar
Mar 10, 2015

First notice that x x cannot be zero.

So, divide the numerator and denominator by x 5 x^{5} to get

( y x ) 2 ( z x ) 2 1 + ( y x ) 5 + ( z x ) 5 \large{\large{ \frac{ (\frac{y}{x})^{2} (\frac{z}{x})^{2} }{1 + (\frac{y}{x})^{5} + (\frac{z}{x})^{5} }}}

now put y x = a , z x = b \frac{y}{x} = a , \frac{z}{x} = b

by A.M - G.M inequality,

1 + a 5 2 + a 5 2 + b 5 2 + b 5 2 5. ( a 10 . b 10 16 ) 5 = 5. ( a 2 . b 2 16 5 ) 1 + \frac{a^{5}}{2} + \frac{a^{5}}{2} + \frac{b^{5}}{2} + \frac{b^{5}}{2} \geq 5. \sqrt[5]{(\frac{a^{10} . b^{10}}{16})} =5.( \frac{a^2 . b^2 }{\sqrt[5]{16}})

So,

a 2 . b 2 1 + a 5 + b 5 ( 16 5 5 ) . ( a 2 . b 2 a 2 . b 2 ) = 16 5 5 \frac{a^2 . b^2}{1 + a^5 + b^5} \leq (\frac{\sqrt[5]{16}}{5}). (\frac{a^2 . b^2}{a^2 . b^2}) = \frac{\sqrt[5]{16}}{5}

Thus, our answer is 16 \boxed{16} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...