What's the measure of the angle?

Geometry Level 3

In the above diagram, the circle with center O O is inscribed in square E F G H EFGH . If the sum of the areas of the shaded blue regions is π 2 2 \dfrac{\pi^2}{2} and B C = 1 \overline{BC} = 1 , find α \alpha (in degrees).


The answer is 14.760926556951.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jan 20, 2021

Let the radius of the circle be r r . Then the side length of the square is 2 r 2r . And the area of the blue regions is:

( 2 r ) 2 π r 2 = π 2 2 r 2 = π 2 2 ( 4 π ) r = π 2 ( 4 π ) 2.3976631135 (2r)^2 - \pi r^2 = \frac {\pi^2}2 \implies r^2 = \frac {\pi^2}{2(4-\pi)} \implies r = \frac \pi{\sqrt{2(4-\pi)}} \approx 2.3976631135

Therefore

α = 4 5 tan 1 ( r 1 r ) 4 5 30.23907344 3 14.8 \alpha = 45^\circ - \tan^{-1} \left(\frac {r-1}r \right) \approx 45^\circ - 30.239073443^\circ \approx \boxed{14.8}

Rocco Dalto
Jan 19, 2021

Let A T A_{T} be the sum of the blue shaded regions

A T = 4 r 2 π r 2 = ( 4 π ) r 2 = π 2 2 \implies A_{T} = 4r^2 - \pi r^2 = (4 - \pi)r^2 = \dfrac{\pi^2}{2} \implies

r = π 2 ( 4 π ) r = \dfrac{\pi}{\sqrt{2(4 - \pi)}} and α + β = 4 5 α = 4 5 β θ = 90 + β \alpha + \beta = 45^{\circ} \implies \alpha = 45^{\circ} - \beta \implies \theta = 90 + \beta and

m = 2 r = π 4 π m = \sqrt{2}r = \dfrac{\pi}{\sqrt{4 - \pi}}

Using law of sines on A B C sin ( 4 5 β ) 1 = sin ( 9 0 + β ) m \triangle{ABC} \implies \dfrac{\sin(45^{\circ} - \beta)}{1} = \dfrac{\sin(90^{\circ} + \beta)}{m} \implies

π 4 π sin ( 4 5 β ) = sin ( 9 0 + β ) \dfrac{\pi}{\sqrt{4 - \pi}}\sin(45^{\circ} - \beta) = \sin(90^{\circ} + \beta) \implies

π cos ( β ) π sin ( β ) = 2 ( 4 π ) cos ( β ) \pi\cos(\beta) - \pi\sin(\beta) = \sqrt{2(4 - \pi)}\cos(\beta) \implies

( π 2 ( 4 π ) ) cos ( β ) = π sin ( β ) tan ( β ) = π 2 ( 4 π ) π (\pi - \sqrt{2(4 - \pi)})\cos(\beta) = \pi\sin(\beta) \implies \tan(\beta) = \dfrac{\pi - \sqrt{2(4 - \pi)}}{\pi} \implies

β = arctan ( π 2 ( 4 π ) π ) α = 4 5 arctan ( π 2 ( 4 π ) π ) 14.76092655695 1 \beta = \arctan(\dfrac{\pi - \sqrt{2(4 - \pi)}}{\pi}) \implies \alpha = 45^{\circ} - \arctan(\dfrac{\pi - \sqrt{2(4 - \pi)}}{\pi}) \approx \boxed{14.760926556951^{\circ}} .

The area of the blue region, A b l u e {{A}_{blue}} , can be expressed as
Area of square Area of circle \text{Area of square }-\text{ Area of circle} , thus

A b l u e = ( 2 R ) 2 π R 2 4 R 2 π R 2 = π 2 2 R 2 = π 2 8 2 π R = π 8 2 π {{A}_{blue}}={{\left( 2R \right)}^{2}}-\pi {{R}^{2}}\Rightarrow 4{{R}^{2}}-\pi {{R}^{2}}=\dfrac{{{\pi }^{2}}}{2}\Rightarrow {{R}^{2}}=\dfrac{{{\pi }^{2}}}{8-2\pi }\Rightarrow R=\dfrac{\pi }{\sqrt{8-2\pi }} On the right O A B \triangle OAB ,

tan ( C A O ) = C O A O tan ( 45 a ) = R 1 R 1 tan a 1 + tan a = 1 1 R tan a = 1 2 R 1 = 1 2 π 8 2 π 1 = 8 2 π 2 π 8 2 π \begin{aligned} \tan \left( \angle CAO \right)=\dfrac{CO}{AO} & \Rightarrow \tan \left( 45{}^\circ -a \right)=\dfrac{R-1}{R} \\ & \Rightarrow \dfrac{1-\tan a}{1+\tan a}=1-\dfrac{1}{R} \\ & \Rightarrow \tan a=\dfrac{1}{2R-1}=\dfrac{1}{2\dfrac{\pi }{\sqrt{8-2\pi }}-1}=\dfrac{\sqrt{8-2\pi }}{2\pi -\sqrt{8-2\pi }} \\ \end{aligned} Hence,

a = tan 1 ( 8 2 π 2 π 8 2 π ) 14.76 a={{\tan }^{-1}}\left( \frac{\sqrt{8-2\pi }}{2\pi -\sqrt{8-2\pi }} \right)\approx \boxed{14.76{}^\circ}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...