Whats the number in unit's place?

Find the units digit of 2 7 3 p 1 3 3 p 27^{3^{p}} - 13^{3^{p}} , where p p is a natural number.

6 Either 4 or 6 4 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 12, 2017

Relevant wiki: Euler's Theorem

2 7 3 p 1 3 3 p 7 3 p mod ϕ ( 10 ) 3 3 p mod ϕ ( 10 ) (mod 10) Since gcd ( 7 , 3 , 10 ) = 1 , Euler’s theorem applies. 7 3 p mod 4 3 3 p mod 4 (mod 10) Euler’s totient function ϕ ( 10 ) = 4 7 ( 4 1 ) p mod 4 3 ( 4 1 ) p mod 4 (mod 10) 7 ( 1 ) p 3 ( 1 ) p (mod 10) Note that ( 1 ) p = { 1 (mod 4) if p is even. 1 (mod 4) if p is odd. { 7 1 3 1 4 (mod 10) 7 3 3 3 7 ( 49 ) 3 ( 9 ) 6 (mod 10) \begin{aligned} 27^{3^p} - 13^{3^p} & \equiv 7^{\color{#3D99F6} 3^p \text{ mod }\phi(10)} - 3^{\color{#3D99F6} 3^p \text{ mod }\phi(10)} \text{ (mod 10)} & \small \color{#3D99F6} \text{Since }\gcd(7,3,10) = 1 \text{, Euler's theorem applies.} \\ & \equiv 7^{\color{#3D99F6} 3^p \text{ mod }4} - 3^{\color{#3D99F6} 3^p \text{ mod }4} \text{ (mod 10)} & \small \color{#3D99F6} \text{Euler's totient function }\phi(10) = 4 \\ & \equiv 7^{(4-1)^p \text{ mod }4} - 3^{(4-1)^p \text{ mod }4} \text{ (mod 10)} \\ & \equiv 7^{\color{#3D99F6}(-1)^p} - 3^{\color{#3D99F6}(-1)^p} \text{ (mod 10)} & \small \color{#3D99F6} \text{Note that } (-1)^p = \begin{cases} 1 \text{ (mod 4)} & \text{if } p \text{ is even.} \\ -1 \text{ (mod 4)} & \text{if } p \text{ is odd.} \end{cases} \\ & \equiv \begin{cases} 7^1 - 3^1 \equiv 4 \text{ (mod 10)} \\ 7^3 - 3^3 \equiv 7(49)-3(9) \equiv 6 \text{ (mod 10)} \end{cases} \end{aligned}

Therefore, the answer is either 4 or 6 .

Where can i learn more about mod? it's quite difficult to understand your solution as I'm not too familiar with mod...

Ojasee Duble - 3 years, 10 months ago

Log in to reply

Check out this link and other links in Brilliant.org.

Chew-Seong Cheong - 3 years, 10 months ago

Log in to reply

Thank you very much!! :)

Ojasee Duble - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...