What's the other name for it?

Calculus Level 5

0 x 5 e x + 1 d x \large \int_0^\infty \frac{x^5}{e^x+1} \, dx

If the integral above is equal to A B π C \dfrac AB \pi^C for coprime positive integers A A and B B , find the value of A + B + C A+B+C .


The answer is 289.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ayush Verma
Jul 30, 2015

We will use Riemann zeta function and Bernoulli number

I = 0 x 5 e x + 1 d x = 0 e x 1 + e x x 5 d x = 0 ( r = 1 ( 1 ) r 1 e r x x 5 ) d x = r = 1 { 0 ( 1 ) r 1 e r x x 5 d x } l e t r x = t 0 ( 1 ) r 1 e r x x 5 d x = ( 1 ) r 1 0 e t ( t r ) 6 1 d t r = ( 1 ) r 1 r 6 Γ 6 = 120 ( 1 ) r 1 r 6 I = r = 1 120 ( 1 ) r 1 r 6 = 120 η ( 6 ) = 120 { ( 1 2 1 6 ) } ζ ( 6 ) = 120 × 31 32 ζ ( 6 ) = 465 4 ζ ( 6 ) ζ ( 6 ) = ζ ( 2 × 3 ) = ( 1 ) 3 + 1 B 6 ( 2 π ) 6 2 ( 6 ) ! = π 6 945 ( a s 6 t h B e r n o u l l i n u m b e r B 6 = 1 42 ) I = 465 4 × π 6 945 = 31 π 6 252 A n s . = A + B + C = 31 + 252 + 6 = 289 I=\int _{ 0 }^{ \infty }{ \cfrac { { x }^{ 5 } }{ { e }^{ x }+1 } dx= } \int _{ 0 }^{ \infty }{ \cfrac { { e }^{ -x } }{ { 1+e }^{ -x } } { x }^{ 5 }dx } \\ \\ =\int _{ 0 }^{ \infty }{ \left( \sum _{ r=1 }^{ \infty }{ { \left( -1 \right) }^{ r-1 }{ e }^{ -rx } } { x }^{ 5 } \right) dx } \\ \\ =\sum _{ r=1 }^{ \infty }{ \left\{ \int _{ 0 }^{ \infty }{ { \left( -1 \right) }^{ r-1 }{ e }^{ -rx }{ x }^{ 5 }dx } \right\} } \\ \\ let\quad rx=t\Rightarrow \quad \int _{ 0 }^{ \infty }{ { \left( -1 \right) }^{ r-1 }{ e }^{ -rx }{ x }^{ 5 }dx } ={ \left( -1 \right) }^{ r-1 }\int _{ 0 }^{ \infty }{ { e }^{ -t }{ \left( \cfrac { t }{ r } \right) }^{ 6-1 }\cfrac { dt }{ r } } \\ \\ =\cfrac { { \left( -1 \right) }^{ r-1 } }{ { r }^{ 6 } } \Gamma 6=120\cfrac { { \left( -1 \right) }^{ r-1 } }{ { r }^{ 6 } } \\ \\ \therefore I=\sum _{ r=1 }^{ \infty }{ 120\cfrac { { \left( -1 \right) }^{ r-1 } }{ { r }^{ 6 } } } =120\eta \left( 6 \right) =120\left\{ \left( 1-{ 2 }^{ 1-6 } \right) \right\} \zeta \left( 6 \right) \\ \\ =120\times \cfrac { 31 }{ 32 } \zeta \left( 6 \right) =\cfrac { 465 }{ 4 } \zeta \left( 6 \right) \\ \\ \zeta \left( 6 \right) =\zeta \left( 2\times 3 \right) =\cfrac { { \left( -1 \right) }^{ 3+1 }{ B }_{ 6 }{ \left( 2\pi \right) }^{ 6 } }{ 2\left( 6 \right) ! } =\cfrac { { \pi }^{ 6 } }{ 945 } \quad \quad (as\quad { 6 }^{ th\quad }Bernoulli\quad number{ \quad B }_{ 6 }=\cfrac { 1 }{ 42 } )\\ \\ \therefore I=\cfrac { 465 }{ 4 } \times \cfrac { { \pi }^{ 6 } }{ 945 } =\cfrac { { 31\pi }^{ 6 } }{ 252 } \\ \\ Ans.=A+B+C=31+252+6=289

Here is a generalisation using the same method.

I = 0 x n e x + 1 d x = 0 e x x n 1 + e x d x = 0 k = 1 [ ( 1 ) k 1 x n e k x ] d x I=\int_{0}^{\infty}\frac{x^n}{e^x+1}dx=\int_{0}^{\infty}\frac{e^{-x}x^n}{1+e^{-x}}dx=\int_{0}^{\infty}\sum\limits_{k=1}^{\infty}[(-1)^{k-1}x^ne^{-kx}]dx

let k x = u d x = d u k kx=u\, \therefore dx=\frac{du}{k}

I = k = 1 ( 1 ) k 1 k n + 1 0 u n e u d u = k = 1 ( 1 ) k 1 k n + 1 Γ ( n + 1 ) I = η ( n + 1 ) Γ ( n + 1 ) I=\sum\limits_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^{n+1}}\int_{0}^{\infty}u^{n}e^{-u}du=\sum\limits_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^{n+1}}Γ(n+1)\\ \therefore I=\eta(n+1)Γ(n+1)

Isaac Buckley - 5 years, 10 months ago

Log in to reply

Yep. You love generalizing things out and that too some easy thoughts. Nice!

Kartik Sharma - 5 years, 10 months ago

Log in to reply

Kartik: do you have an English solution for this?

Pi Han Goh - 5 years, 10 months ago
Shivam Mishra
Mar 23, 2016

well it can be solved pretty easily by using Dirichlet Eta Function

Yup. The other solution poster derived that formula.

Pi Han Goh - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...