∫ 0 ∞ e x + 1 x 5 d x
If the integral above is equal to B A π C for coprime positive integers A and B , find the value of A + B + C .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Here is a generalisation using the same method.
I = ∫ 0 ∞ e x + 1 x n d x = ∫ 0 ∞ 1 + e − x e − x x n d x = ∫ 0 ∞ k = 1 ∑ ∞ [ ( − 1 ) k − 1 x n e − k x ] d x
let k x = u ∴ d x = k d u
I = k = 1 ∑ ∞ k n + 1 ( − 1 ) k − 1 ∫ 0 ∞ u n e − u d u = k = 1 ∑ ∞ k n + 1 ( − 1 ) k − 1 Γ ( n + 1 ) ∴ I = η ( n + 1 ) Γ ( n + 1 )
Log in to reply
Yep. You love generalizing things out and that too some easy thoughts. Nice!
Log in to reply
Kartik: do you have an English solution for this?
well it can be solved pretty easily by using Dirichlet Eta Function
Yup. The other solution poster derived that formula.
Problem Loading...
Note Loading...
Set Loading...
We will use Riemann zeta function and Bernoulli number
I = ∫ 0 ∞ e x + 1 x 5 d x = ∫ 0 ∞ 1 + e − x e − x x 5 d x = ∫ 0 ∞ ( r = 1 ∑ ∞ ( − 1 ) r − 1 e − r x x 5 ) d x = r = 1 ∑ ∞ { ∫ 0 ∞ ( − 1 ) r − 1 e − r x x 5 d x } l e t r x = t ⇒ ∫ 0 ∞ ( − 1 ) r − 1 e − r x x 5 d x = ( − 1 ) r − 1 ∫ 0 ∞ e − t ( r t ) 6 − 1 r d t = r 6 ( − 1 ) r − 1 Γ 6 = 1 2 0 r 6 ( − 1 ) r − 1 ∴ I = r = 1 ∑ ∞ 1 2 0 r 6 ( − 1 ) r − 1 = 1 2 0 η ( 6 ) = 1 2 0 { ( 1 − 2 1 − 6 ) } ζ ( 6 ) = 1 2 0 × 3 2 3 1 ζ ( 6 ) = 4 4 6 5 ζ ( 6 ) ζ ( 6 ) = ζ ( 2 × 3 ) = 2 ( 6 ) ! ( − 1 ) 3 + 1 B 6 ( 2 π ) 6 = 9 4 5 π 6 ( a s 6 t h B e r n o u l l i n u m b e r B 6 = 4 2 1 ) ∴ I = 4 4 6 5 × 9 4 5 π 6 = 2 5 2 3 1 π 6 A n s . = A + B + C = 3 1 + 2 5 2 + 6 = 2 8 9