What's the Pink Area?

Geometry Level pending

In square A B C D ABCD with side length a a , we have two inscribed quarter circles and a red circle with radius r r which is tangent to both quarter circles and tangent to C D \overline{CD} as shown above.

Let A p A_{p} be the area of the pink region.

If A p a 2 = α β π λ \dfrac{A_{p}}{a^2} = \dfrac{\sqrt{\alpha}}{\beta} - \dfrac{\pi}{\lambda} , where α , β \alpha,\beta and λ \lambda are coprime positive integers, find α + β + λ \alpha + \beta + \lambda .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Referring to the figure, let . Then, on right D J G \triangle DJG , sin θ = r a r \sin \theta =\dfrac{r}{a-r} Applying cosine rule on A G D \triangle AGD ,

A G 2 = D A 2 + D G 2 2 D A D G cos ( A D G ) ( a + r ) 2 = a 2 + ( a r ) 2 2 a ( a r ) cos ( 90 θ ) a 2 + 2 a r + r 2 = a 2 + a 2 2 a r + r 2 2 a ( a r ) sin ( θ ) 4 a r = a 2 2 a ( a r ) r a r 6 a r = a 2 r = a 6 \begin{aligned} & A{{G}^{2}}=D{{A}^{2}}+D{{G}^{2}}-2DA\cdot DG\cdot \cos \left( \angle ADG \right) \\ & \Rightarrow {{\left( a+r \right)}^{2}}={{a}^{2}}+{{\left( a-r \right)}^{2}}-2a\left( a-r \right)\cos \left( 90{}^\circ -\theta \right) \\ & \Rightarrow \cancel{{{a}^{2}}}+2ar+\bcancel{{{r}^{2}}}=\cancel{{{a}^{2}}}+{{a}^{2}}-2ar+\bcancel{{{r}^{2}}}-2a\left( a-r \right)\sin \left( \theta \right) \\ & \Rightarrow 4ar={{a}^{2}}-2a\cancel{\left( a-r \right)}\dfrac{r}{\cancel{a-r}} \\ & \Rightarrow 6ar={{a}^{2}} \\ & \Rightarrow r=\dfrac{a}{6} \\ \end{aligned} Now, for the area A p {{A}_{p}} of the pink region,

A p i n k = A ( D , E C ) ( A ( A , E D ) [ A E D ] ) A r e d c i r c l e = 1 2 π 6 a 2 ( 1 2 π 3 a 2 a 2 3 4 ) π ( a 6 ) 2 = = ( 3 4 π 9 ) a 2 \begin{aligned} {{A}_{pink}} & ={{A}_{\left( D,\overset\frown{EC} \right)}}-\left( {{A}_{\left( A,\overset\frown{ED} \right)}}-\left[ AED \right] \right)-{{A}_{red\text{ }circle}} \\ & =\dfrac{1}{2}\cdot \dfrac{\pi }{6}\cdot {{a}^{2}}-\left( \dfrac{1}{2}\cdot \dfrac{\pi }{3}\cdot {{a}^{2}}-\dfrac{{{a}^{2}}\sqrt{3}}{4} \right)-\pi {{\left( \dfrac{a}{6} \right)}^{2}} \\ & =\ldots \\ & =\left( \dfrac{\sqrt{3}}{4}-\dfrac{\pi }{9} \right){{a}^{2}} \\ \end{aligned}

Hence, A p a 2 = 3 4 π 9 \dfrac{{{A}_{p}}}{{{a}^{2}}}=\dfrac{\sqrt{3}}{4}-\dfrac{\pi }{9} For the answer, α = 3 \alpha =3 , β = 4 \beta =4 , λ = 9 \lambda =9 , thus, α + β + λ = 16 \alpha + \beta + \lambda = \boxed{16} .

Rocco Dalto
Apr 5, 2021

Using the above diagram h 2 = ( a + r ) 2 ( a r ) 2 = ( a r ) 2 r 2 h^2 = (a + r)^2 - (a - r)^2 = (a - r)^2 - r^2 \implies

4 a r = a 2 2 a r 6 a r = a 2 r = a 6 4ar = a^2 - 2ar \implies 6ar = a^2 \implies r = \dfrac{a}{6} \implies the area of the red circle is A c = a 2 36 π A_{c} = \dfrac{a^2}{36}\pi

The equations of the blue and green quarter circles are:

x 2 + y 2 = a 2 x^2 + y^2 = a^2

( x a ) 2 + y 2 = a 2 (x - a)^2 + y^2 = a^2

Solving the two equations above we obtain x = a 2 x = \dfrac{a}{2} \implies

I = a 2 a a 2 ( x a ) 2 a 2 x 2 d x I = \displaystyle\int_{\frac{a}{2}}^{a} \sqrt{a^2 - (x - a)^2} - \sqrt{a^2 - x^2} \:\ dx

For I 1 = a 2 a a 2 ( x a ) 2 d x I_{1} = \displaystyle\int_{\frac{a}{2}}^{a} \sqrt{a^2 - (x - a)^2} \:\ dx

Let x a = a sin ( θ ) d x = a cos ( θ ) d θ x - a = a\sin(\theta) \implies dx = a\cos(\theta) \:\ d\theta \implies

I 1 = a 2 2 ( θ + 1 2 sin ( 2 θ ) ) π 6 0 = I_{1} = \dfrac{a^2}{2}(\theta + \dfrac{1}{2}\sin(2\theta))|_{-\frac{\pi}{6}}^{0} = a 2 2 ( π 6 + 3 4 ) \dfrac{a^2}{2}(\dfrac{\pi}{6} + \dfrac{\sqrt{3}}{4})

For I 2 = a 2 a a 2 x 2 d x I_{2} = \displaystyle\int_{\frac{a}{2}}^{a} \sqrt{a^2 - x^2} \:\ dx

Let x = a sin ( θ ) d x = a cos ( θ ) d θ x = a\sin(\theta) \implies dx = a\cos(\theta) \:\ d\theta \implies

I 2 = a 2 2 ( θ + 1 2 sin ( 2 θ ) ) π 6 π 2 = I_{2} = \dfrac{a^2}{2}(\theta + \dfrac{1}{2}\sin(2\theta))|_{-\frac{\pi}{6}}^{\frac{\pi}{2}} = a 2 2 ( π 3 3 4 ) \dfrac{a^2}{2}(\dfrac{\pi}{3} - \dfrac{\sqrt{3}}{4})

I = a 2 2 ( 3 2 π 6 ) A p = I A c = ( 3 4 π 9 ) a 2 \implies I = \dfrac{a^2}{2}(\dfrac{\sqrt{3}}{2} - \dfrac{\pi}{6}) \implies A_{p} = I - A_{c} = (\dfrac{\sqrt{3}}{4} - \dfrac{\pi}{9})a^2 \implies

A p a 2 = 3 4 π 9 = α β π λ α + β + λ = 16 \dfrac{A_{p}}{a^2} = \dfrac{\sqrt{3}}{4} - \dfrac{\pi}{9} = \dfrac{\sqrt{\alpha}}{\beta} - \dfrac{\pi}{\lambda} \implies \alpha + \beta + \lambda = \boxed{16} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...