What's the radius? (Inscribed circle)

Geometry Level 3

A B C D ABCD is a square of side length 1 1 . What is the radius of the red circle?

Note: The red circle is inscribed by the quarter circle arc rather than the left side of the square.

1 8 \frac{1}{8} 2 17 \frac{2}{17} 17 12 2 3 2 2 \frac{17-12\sqrt{2}}{3-2\sqrt{2}} 2 1 2 + 2 \frac{\sqrt{2}-1}{\sqrt{2}+2} 7 5 2 + 2 34 24 2 + ( 99 70 2 ) 17 12 2 6 2 2 \frac{7-5\sqrt{2}+2\sqrt{34-24\sqrt{2}}+(99-70\sqrt{2})\sqrt{17-12\sqrt{2}}}{6-2\sqrt{2}} 9 7 2 + 2 34 24 2 4 2 9 \frac {9-7\sqrt{2}+2\sqrt{34-24\sqrt{2}}}{4\sqrt{2}-9} 9 4 2 17 2 \frac{9-4\sqrt{2}}{17\sqrt{2}} 7 4 2 + ( 2 2 4 ) 2 2 2 1 + 2 2 \frac{7-4\sqrt{2}+(2\sqrt{2}-4)\sqrt{2-2\sqrt{2}}}{1+2\sqrt{2}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Aug 29, 2019

OK, but let's simplify the answer! If R R is the radius of the large circle and r r the radius of the small circle, then (considering a radius of the quarter circle at the point of intersection of the quarter circle and the large circle, R + R 2 = 1 R + R\sqrt{2} = 1 , so that R = 2 1 R = \sqrt{2}-1 . By considering the right-angled triangle with hypotenuse the line segment between the centres of the small and large circles, then ( R + r ) 2 = ( R r ) 2 + ( 1 2 r R ) 2 4 R r = ( 1 2 r R ) 2 = R 2 + 1 2 r 2 R 1 2 r 2 R 1 2 r = R 2 + 1 ( 4 R + 2 ) r 2 ( 2 1 ) 1 2 r = 4 2 2 ( 4 2 2 ) r 1 2 r = 2 ( 3 + 2 ) r 1 2 r = 2 2 2 ( 3 + 2 ) r + ( 11 + 6 2 ) r 2 ( 11 + 6 2 ) r 2 ( 2 + 6 2 ) r 1 = 0 ( r 2 + 1 ) ( ( 11 + 6 2 ) r 2 1 ) = 0 \begin{aligned} (R + r)^2 & = \; (R - r)^2 + \big(\sqrt{1-2r} - R\big)^2 \\ 4Rr & = \; \big(\sqrt{1- 2r} - R\big)^2 \; = \; R^2 + 1 - 2r - 2R\sqrt{1-2r} \\ 2R\sqrt{1-2r} & = \; R^2 + 1 - (4R+2)r \\ 2(\sqrt{2}-1)\sqrt{1-2r} & = \; 4 - 2\sqrt{2} - (4\sqrt{2}-2)r \\ \sqrt{1-2r} & = \; \sqrt{2} - (3 + \sqrt{2})r \\ 1 - 2r & = \; 2 - 2\sqrt{2}(3 + \sqrt{2})r + (11 + 6\sqrt{2})r^2 \\ (11 + 6\sqrt{2})r^2 - (2 + 6\sqrt{2})r - 1 & = \; 0 \\ (r - \sqrt{2} + 1)\big((11 + 6\sqrt{2})r - \sqrt{2}-1\big) & = \; 0 \end{aligned} Since we cannot have r = 2 1 = R r = \sqrt{2}-1=R , we deduce that R = 2 + 1 11 + 6 2 = 5 2 1 49 R \; = \; \frac{\sqrt{2}+1}{11 + 6\sqrt{2}} \; = \; \boxed{\frac{5\sqrt{2}-1}{49}} which is equal to, but much more simply expressed than, the official answer of 9 7 2 + 2 34 24 2 4 2 9 \frac{9 - 7\sqrt{2} + 2\sqrt{34 - 24\sqrt{2}}}{4\sqrt{2}-9} To see that these are the same, note that 34 24 2 = 3 2 4 \sqrt{34-24\sqrt{2}} = 3\sqrt{2}-4 .

Chew-Seong Cheong
Aug 29, 2019

Let point C C be the origin ( 0 , 0 ) (0,0) of x y xy -plane and flip the diagram vertically. Let the radius of the big circle be r 1 r_1 , then r 1 + 2 r 1 = 1 r_1 + \sqrt 2r_1 = 1 r 1 = 1 2 + 1 = 2 1 \implies r_1 = \frac 1{\sqrt 2 + 1} = \sqrt 2 - 1 . Let the radius of the red circle be r r , and the coordinates of the center of the red circle be O ( x , r ) O (x, r) . Note that O O is the intersection of circle x 2 + y 2 = ( 1 r ) 2 x^2 + y^2 = (1-r)^2 and circle ( x r 1 ) 2 + ( y r 1 ) 2 = ( r 1 + r ) 2 (x-r_1)^2 + (y-r_1)^2 = (r_1+r)^2 , when y = r y = r . That is the point O ( x , r ) O (x,r) satisfies:

{ x 2 + r 2 = ( 1 r ) 2 x 2 = 1 2 r . . . ( 1 ) ( x r 1 ) 2 + ( r r 1 ) 2 = ( r 1 + r ) 2 ( x r 1 ) 2 = 4 r 1 r . . . ( 2 ) \begin{cases} x^2 + r^2 = (1-r)^2 & \implies x^2 = 1 - 2r & ...(1) \\ (x-r_1)^2 + (r-r_1)^2 = (r_1+r)^2 & \implies (x-r_1)^2 = 4r_1r & ...(2) \end{cases}

From (2):

x 2 2 r 1 x + r 1 2 = 4 r 1 r x 2 r 1 2 x + r 1 = 4 r blueDivide both sides by r 1 ( 1 2 r ) ( 2 + 1 ) 2 1 2 r + 2 1 = 4 r Note that x 2 = 1 2 r , r 1 = 2 1 2 ( 3 + 2 ) r = 1 2 r Squaring both sides ( 11 + 6 2 ) r 2 ( 6 2 + 4 ) r + 2 = 1 2 r ( 11 + 6 2 ) r 2 ( 6 2 + 2 ) r + 1 = 0 \begin{aligned} x^2 - 2r_1x + r_1^2 & = 4r_1r \\ \frac {x^2}{r_1} - 2x + r_1 & = 4r & \small \color{#3D99F6} \text{blue} \text{Divide both sides by }r_1 \\ (1-2r)(\sqrt 2+1) - 2\sqrt{1-2r} + \sqrt 2 - 1 & = 4r & \small \color{#3D99F6} \text{Note that }x^2 = 1-2r, r_1 = \sqrt 2 - 1 \\ \sqrt 2 - (3+\sqrt 2)r & = \sqrt{1-2r} & \small \color{#3D99F6} \text{Squaring both sides} \\ (11+6\sqrt 2)r^2 - (6\sqrt 2 + 4)r + 2 & = 1 - 2r \\ (11+6\sqrt 2)r^2 - (6\sqrt 2 + 2)r + 1 & = 0 \end{aligned}

r = 2 + 1 11 + 6 2 = 5 2 1 49 = 9 7 2 + 2 34 24 2 4 2 9 See note. \begin{aligned} \implies r & = \frac {\sqrt 2 + 1}{11+6\sqrt 2} = \frac {5\sqrt 2-1}{49} = \color{#3D99F6} \boxed{\frac {9-7\sqrt 2+2\sqrt{34-24\sqrt 2}}{4\sqrt 2 - 9}} \quad \small \text{See note.} \end{aligned}


Note:

X = 9 7 2 + 2 34 24 2 4 2 9 Hint from Mark Hennings: ( 3 2 4 ) 2 = 34 24 2 = 9 7 2 + 2 ( 3 2 4 ) 4 2 9 = 1 2 4 2 9 = ( 2 1 ) ( 9 + 4 2 ) ( 9 4 2 ) ( 9 + 4 2 ) = 5 2 1 49 \begin{aligned} X & = \frac {9-7\sqrt 2+2\color{#3D99F6} \sqrt{34-24\sqrt 2}}{4\sqrt 2 - 9} & \small \color{#3D99F6} \text{Hint from Mark Hennings: } (3\sqrt 2 - 4)^2 = 34-24\sqrt 2 \\ & = \frac {9-7\sqrt 2+2\color{#3D99F6} (3\sqrt 2-4)}{4\sqrt 2 - 9} \\ & = \frac {1-\sqrt 2}{4\sqrt 2 - 9} \\ & = \frac {(\sqrt 2-1)(9+4\sqrt 2)}{(9-4\sqrt 2)(9+4\sqrt 2)} \\ & = \frac {5\sqrt 2 - 1}{49} \end{aligned}

Oh wow, this is way more compact and elegant than my solution! It's so thrilling to discover new, inventive ways of solving this particular one (which I mostly credit to helping me break free of approaching math problems ridigly and unimaginatively). So thank you!

Marley McWilliams - 1 year, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...