What's The Radius?

Geometry Level 4

A = ( 400 , 155 ) , B = ( 650 , 550 ) , C = ( 370 , 636 ) A = ( 400, 155) , B = ( 650, 550), C = (370, 636) .

To 2 decimal places, what is the radius of the circumcircle of A B C ABC ?


The answer is 249.77.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Sujay Motani
Nov 25, 2014

Calculate the sides of the triangle using distance formula. and use the relation Area of triangle = (abc/4R) Area of triangle = sq root (s (s-a)(s-b)(s-c)) where s=(a+b+c)/2

a,b,c sides of triangle R is circumradius of triangle

I too did the same

Taru Bhardwaj - 6 years, 6 months ago

The above solution was great (I used it), but you can use the matrix form of the area of a triangle given three coordinates to find the area. Just imput this URL and see what I mean. https://www.google.com/search?q=area+of+a+triangle+matrix&safe=strict&rlz=1C1CHBF enUS715US715&espv=2&biw=1366&bih=662&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjU5KPdxoHQAhVnwYMKHe-kBVkQ AUIBigB#imgrc=rZklBWB415Q-cM%3A

Kevin Guo - 4 years, 7 months ago
Chew-Seong Cheong
Nov 23, 2014

Let the coordinates of the center of the circumcircle be O ( x , y ) O(x,y) and its radius R R .

Then, we have:

{ R 2 = ( x 400 ) 2 + ( y 155 ) 2 . . . ( 1 ) R 2 = ( x 650 ) 2 + ( y 550 ) 2 . . . ( 2 ) R 2 = ( x 370 ) 2 + ( y 636 ) 2 . . . ( 3 ) \begin{cases} R^2 & = & (x-400)^2+(y-155)^2 & ...(1) \\ R^2 & = & (x-650)^2+(y-550)^2 & ...(2) \\ R^2 & = & (x-370)^2+(y-636)^2 & ...(3) \end{cases}

{ R 2 = x 2 800 x + 160000 + y 2 310 y + 24025 . . . ( 1 ) R 2 = x 2 1300 x + 422500 + y 2 1100 y + 302500 . . . ( 2 ) R 2 = x 2 740 y + 136900 + y 2 1272 y + 404496 . . . ( 3 ) \begin{cases} R^2 & = & x^2-800x+160000+y^2-310y+24025 & ...(1) \\ R^2 & = & x^2-1300x+422500+y^2-1100y+302500 & ...(2) \\ R^2 & = & x^2-740y+136900+y^2-1272y+404496 & ...(3) \end{cases}

E q . 1 E q . 2 Eq. 1 - Eq. 2 and E q . 3 E q . 2 Eq. 3 - Eq. 2 :

{ 0 = 500 x 262500 + 790 y 278475 . . . ( 4 ) 0 = 560 x 285600 172 y + 101996 . . . ( 5 ) \begin{cases} 0 & = & 500x-262500+790y-278475 & ...(4) \\ 0 & = & 560x-285600-172y+101996 & ...(5) \end{cases}

{ 500 x + 790 y = 540975 . . . ( 4 ) 560 x 172 y = 183604 . . . ( 5 ) \begin{cases} 500x+790y & = & 540975 & ...(4) \\ 560x-172y & = & 183604 & ...(5) \end{cases}

E q . 4 / 790 Eq. 4/790 and E q . 5 / 175 Eq. 5/175 :

{ 0.632911392 x + y = 684.778481 . . . ( 6 ) 3.255813953 x y = 1067.465116 . . . ( 7 ) \begin{cases} 0.632911392x+y & = & 684.778481 & ...(6) \\ 3.255813953x-y & = & 1067.465116 & ...(7) \end{cases}

E q . 6 + E q . 7 Eq. 6 + Eq. 7 : 3.888725346 x = 1752.243597 x = 450.5958743 \quad 3.888725346x = 1752.243597\quad \Rightarrow x = 450.5958743

Substituting value of x x in E q . 6 Eq. 6 : y = 399.5912188 \quad \Rightarrow y = 399.5912188

Substituting values of x x and y y in E q . 1 Eq.1 :

R 2 = ( 450.5958743 400 ) 2 + ( 399.5912188 155 ) 2 R^2 = (450.5958743-400)^2+(399.5912188-155)^2

= ( 50.5958743 400 ) 2 + ( 244.5912188 155 ) 2 \quad \space = (50.5958743-400)^2+(244.5912188-155)^2

= 2559.9425 + 59824.8643 \quad \space = 2559.9425+59824.8643

= 62384.8068 \quad \space =62384.8068

R = 62384.8068 = 249.77 \Rightarrow R = \sqrt {62384.8068} = \boxed {249.77}

Omkar Kamat
Dec 20, 2014

We can use the extended sine rule. a/sin(A) = b/sin(B) =c/sin(C) = 2R where R is the circumradius. Since we are given the coordinates, we can use Pythagoras to find out the length of the sides. We can then use the cosine rule to find out one of the angles.

U s e m i d p o i n t a n d s l o p e f o r m u l i i f o r A B t o g e t F a n d m c . S i m i l a r l y g e t E a n d m b f o r A C . L i n e f r o m D a n d s l o p e 1 m c , i n t e r s e c t l i n e f r o m F a n d s l o p e 1 m b a t O . U s e l e n g t h f o r m u l a t o f i n d t h e l e n g t h o f A O = r e q u i r e d R = 249.77. Use\ midpoint\ and\ slope\ formulii\ for\ AB\ to\ get\ F\ and\ m_c.\\ Similarly\ get\ E\ and\ m_b\ for \ AC.\\ Line \ from\ D\ and\ slope\ \dfrac {-1}{m_c},\ intersect\ line \ from\ F\ and\ slope\ \dfrac {-1}{m_b}\ \ at\ O.\\ Use \ length \ formula \ to \ find \ the \ length \ of\ AO=required \ R=249.77.

Jake Lai
Nov 25, 2014

Kudos to Sujay Motani for his really elegant solution, unlike my rather tedious solution.

Let θ = B A C \theta = \angle BAC and the radius be r r .

By the cosine rule, cos θ = A B 2 + A C 2 B C 2 2 × A B × A C \cos \theta = \frac{AB^{2}+AC^{2}-BC^{2}}{2 \times AB \times AC} .

Similarly, cos 2 θ = r 2 + r 2 B C 2 2 × r × r = 2 r 2 B C 2 2 r 2 \cos 2\theta = \frac{r^{2}+r^{2}-BC^{2}}{2 \times r \times r} = \frac{2r^{2}-BC^{2}}{2r^{2}} .

Combining the two equations gives

2 cos 1 ( A B 2 + A C 2 B C 2 2 × A B × A C ) = cos 1 ( 2 r 2 B C 2 2 r 2 ) 2\cos^{-1} (\frac{AB^{2}+AC^{2}-BC^{2}}{2 \times AB \times AC}) = \cos^{-1} (\frac{2r^{2}-BC^{2}}{2r^{2}}) .

After a bit of manipulation, we get

r = B C 2 2 cos ( 2 cos 1 ( A B 2 + A C 2 B C 2 2 × A B × A C ) ) r = \frac{BC}{\sqrt{2-2\cos (2\cos^{-1} (\frac{AB^{2}+AC^{2}-BC^{2}}{2 \times AB \times AC}))}} .

Plugging in the values of A B , A C AB, AC and B C BC by using the distance formula d = ( x 1 x 2 ) 2 + ( y 1 y 2 ) 2 d = \sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}} , we get r 249.77 r \approx \boxed{249.77} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...