What's the remainder ?

What is the remainder when 2 87 + 3 \huge2^{87} + 3 is divided by 7 \huge7 ?

Please add Solutions


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

( 2 87 + 3 ) m o d 7 = ( 2 87 m o d 7 + 3 ) m o d 7 (2^{ 87 }+3) \mod 7= (2^{ 87 }\mod 7+3)\mod 7

We know, 2 3 = 8 1 m o d 7 2^3=8\equiv 1\mod 7

Therefore: 2 87 ( 2 3 ) 29 1 29 1 m o d 7 2^{87}\equiv(2^3)^{29}\equiv 1^{29}\equiv 1\mod 7

Using this, the remainder needed is 1 + 3 = 4 1+3=\boxed{4}

Did the same way!

B.S.Bharath Sai Guhan - 6 years, 8 months ago

Same method I used.

Isaac Thomas - 6 years, 5 months ago
Aareyan Manzoor
Oct 11, 2014

notice a sequence 2 1 + 3 = 5 ( m o d 7 ) 2^{1} +3 = 5 (mod 7) 2 2 + 3 = 0 ( m o d 7 ) 2^{2} +3 = 0 (mod 7) 2 3 + 3 = 4 ( m o d 7 ) 2^{3} +3 =4 (mod 7) 2 4 + 3 = 5 ( m o d 7 ) 2^{4} +3 = 5 (mod 7) so, every , 1= 5 2= 0 3= 4 since 87 is a multiple of 3 the answer will be 4

Chirag Gupta
Dec 26, 2014

2 87 + 3 ( 1 + 7 ) 29 + 3 u s i n g t h e e x p a n s i o n o f ( 1 + a ) n 29 C 0 7 0 + 29 C 1 7 1 . . . . . 29 C 29 7 29 + 3 1 + 7 k + 3 7 k + 4 . T h u s , r e m a i n d e r i s 4. { 2 }^{ 87 }+3\\ { (1+7) }^{ 29 }\quad +\quad 3\\ \quad using\quad the\quad expansion\quad of\quad { (1+a) }^{ n }\\ 29C0*7^{ 0 }+29C1*{ 7 }^{ 1 }.....29C29*7^{ 2 9}+3\\ 1+7*k+3\\ 7*k+4\quad .Thus,\quad remainder\quad is\quad 4.

Sophie Crane
Oct 31, 2014

Fermat's Little Theorem

That's what i used!

Isaac Thomas - 6 years, 5 months ago

Log in to reply

Yep it's easy using fermat

yashas123 bharadwaj - 3 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...