What's the sum?

Algebra Level 3

If a , b , c a, b, c are positive integers such that a 2 + 2 b 2 2 a b = 169 a^2+2b^2-2ab=169 and 2 b c c 2 = 169 2bc-c^2=169 , then what is the value of a + b + c ? a+b+c ?


The answer is 39.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Toshit Jain
Mar 15, 2017

a 2 + 2 b 2 2 a b = 169 ( 1 ) a^{2} \space + \space 2b^{2} \space -2ab \space=\space 169 \space \space \space (1)

2 b c c 2 = 169 ( 2 ) 2bc \space - \space c^{2} \space=\space 169 \space\space\space (2)

S u b t r a c t i n g ( 2 ) f r o m ( 1 ) Subtracting \space (2) \space from \space(1)

a 2 + 2 b 2 2 a b 2 b c + c 2 = 169 169 \rightarrow \space a^{2} \space +2 \space b^{2} \space - \space 2ab \space -2bc \space + \space c^{2} \space=\space 169\space-\space169

A f t e r a r r a n g i n g t h e m After \space arranging \space them

a 2 + b 2 2 a b + b 2 + c 2 2 b c = 0 \rightarrow \space a^{2} \space+\space b^{2} \space - \space 2ab \space + \space b^{2} \space + \space c^{2} \space-\space 2bc \space =\space 0

( a b ) 2 + ( b c ) 2 = 0 \rightarrow \space (a-b)^{2} \space + \space (b-c)^{2} \space = \space 0

( a b ) 2 = 0 , ( b c ) 2 = 0 \Rightarrow \space (a-b)^{2} \space =\space 0 \space, \space (b-c)^{2} \space = \space 0

a = b = c \therefore \space a \space=\space b \space = \space c

a 2 + 2 a 2 2 a 2 = 169 \Rightarrow \space a^{2} \space+\space 2a^{2} \space - \space 2a^{2}\space=\space 169

a = 169 = 13 \Rightarrow \space a \space = \space \sqrt{169} \space = \space 13

a = b = c = 13 \therefore \space a \space=\space b \space = \space c \space = \space 13

a + b + c = 3 × 13 \Rightarrow \space a \space + \space b \space + \space c \space=\space 3 \space \times \space 13

a + b + c = 39 \boxed{ \therefore \space a \space + \space b \space + \space c \space=\space 39}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...