What's the Unit Digit #2

Algebra Level 5

Let x = ( 15 + 220 ) 19 + ( 15 + 220 ) 82 x={ (15+\sqrt { 220 } ) }^{ 19 }+{ (15+\sqrt { 220 } ) }^{ 82 } , find the unit digit of x x .

Note: The unit digit is the digit just before the decimal point.


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Apr 25, 2017

Note that 0 < 15 220 = 5 15 + 220 < 1 3 0 \; < \; 15 - \sqrt{220} \; = \; \frac{5}{15 + \sqrt{220}} \; < \; \frac13 and so certainly 0 < ( 15 220 ) 82 < ( 15 220 ) 19 < 1 3 0 \; < \; (15 - \sqrt{220})^{82} \; < \; (15 - \sqrt{220})^{19} \; < \; \tfrac13 so that 0 < B = ( 15 220 ) 19 + ( 15 220 ) 82 < 2 3 < 1 0 \; < \; B \; = \; (15 - \sqrt{220})^{19} + (15 - \sqrt{220})^{82} \; < \; \tfrac23 \; < \; 1 In fact, B B is very close to 0 0 , but the above is enough. Now ( 15 + 220 ) 19 + ( 15 220 ) 19 = 2 j = 0 9 ( 19 2 j ) 1 5 19 2 j 22 0 j ( 15 + 220 ) 82 + ( 15 220 ) 82 = 2 j = 0 41 ( 82 2 j ) 1 5 82 2 j 22 0 j \begin{aligned} (15 + \sqrt{220})^{19} + (15 - \sqrt{220})^{19} & = 2\sum_{j=0}^9 {19 \choose 2j}15^{19-2j} 220^j \\ (15 + \sqrt{220})^{82} + (15 - \sqrt{220})^{82} & = 2\sum_{j=0}^{41} {82 \choose 2j}15^{82-2j} 220^j \end{aligned} and so, since 220 0 ( m o d 10 ) 220 \equiv 0 \pmod{10} , we see that ( 15 + 220 ) 19 + ( 15 220 ) 19 2 × 1 5 19 0 ( 15 + 220 ) 82 + ( 15 220 ) 82 2 × 1 5 82 0 \begin{aligned} (15 + \sqrt{220})^{19} + (15 - \sqrt{220})^{19} & \equiv \; 2\times 15^{19} \; \equiv \; 0 \\ (15 + \sqrt{220})^{82} + (15 - \sqrt{220})^{82} & \equiv \; 2\times 15^{82} \; \equiv \; 0 \end{aligned} modulo 10 10 . Thus, if we define A = ( 15 + 220 ) 19 + ( 15 + 220 ) 82 A \; = \; (15 + \sqrt{220})^{19} + (15 + \sqrt{220})^{82} then we have shown that A + B 0 ( m o d 10 ) A + B \equiv 0 \pmod{10} , and so (since 0 < B < 1 0 < B < 1 ) the last digit of A A before the decimal point is 9 \boxed{9}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...