What's the Value?

Geometry Level pending

Let m > 1 m > 1 .

In right A B C \triangle{ABC} with A B = m r \overline{AB} =mr , B D \overline{BD} and B C \overline{BC} are tangent to the two inscribed semicircles with radius r at F F and H H respectively.

If the value of m m for which A C r = 5 m 2 ( m 2 1 ) 2 \dfrac{\overline{AC}}{r} = \dfrac{5m^2}{(m^2 - 1)^2} can be expressed as m = a b c d m = \dfrac{\sqrt{a}\sqrt{b - \sqrt{c}}}{d} , where a , b , c a,b,c and d d are coprime positive integers, find a + b + c + d a + b + c + d .


The answer is 156.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Mar 10, 2021

A B D E F D m = B D y B D = m y \triangle{ABD} \sim \triangle{EFD} \implies m = \dfrac{\overline{BD}}{y} \implies \overline{BD} = my

Using the Pythagorean theorem on A B D m 2 y 2 = m 2 r 2 + ( r + y ) 2 \triangle{ABD} \implies m^2y^2 = m^2r^2 + (r + y)^2 \implies

( m 2 1 ) y 2 2 r y ( m 2 + 1 ) r 2 = 0 y = m 2 + 1 m 2 1 r (m^2 - 1)y^2 - 2ry - (m^2 + 1)r^2 = 0 \implies y = \dfrac{m^2 + 1}{m^2 - 1}r \implies

A D = 2 m 2 m 2 1 r A G = A D + r = 3 m 2 1 m 2 1 r \overline{AD} = \dfrac{2m^2}{m^2 - 1}r \implies \overline{AG} = \overline{AD} + r = \dfrac{3m^2 - 1}{m^2 - 1}r

A B C G H C m = B C x B C = m x \triangle{ABC} \sim \triangle{GHC} \implies m = \dfrac{\overline{BC}}{x} \implies \overline{BC} = mx

Using the Pythagorean theorem on A B C m 2 x 2 = m 2 r 2 + ( 3 m 2 1 m 2 1 r + x ) 2 \triangle{ABC} \implies m^2x^2 = m^2r^2 + (\dfrac{3m^2 - 1}{m^2 - 1}r + x)^2

( m 2 1 ) 3 x 2 2 ( 3 m 2 1 ) ( m 2 1 ) r x ( ( 3 m 2 1 ) 2 + m 2 ( m 2 1 ) 2 ) r 2 = 0 \implies (m^2 - 1)^3x^2 - 2(3m^2 - 1)(m^2 - 1)rx - ((3m^2 - 1)^2 + m^2(m^2 - 1)^2)r^2 = 0 \implies

x = 3 m 2 1 + m 2 m 4 + 6 m 2 3 ( m 2 1 ) 2 r x = \dfrac{3m^2 - 1 + m^2\sqrt{m^4 + 6m^2 - 3}}{(m^2 - 1)^2}r dropping the negative root

A C = A G + x = 3 m 2 1 + m 4 + 6 m 2 3 ( m 2 1 ) 2 m 2 r \implies \overline{AC} = \overline{AG} + x = \dfrac{3m^2 - 1 + \sqrt{m^4 + 6m^2 - 3}}{(m^2 - 1)^2}m^2r

A C r = 3 m 2 1 + m 4 + 6 m 2 3 ( m 2 1 ) 2 m 2 = 5 m 2 ( m 2 1 ) 2 \implies \dfrac{AC}{r} = \dfrac{3m^2 - 1 + \sqrt{m^4 + 6m^2 - 3}}{(m^2 - 1)^2}m^2 = \dfrac{5m^2}{(m^2 - 1)^2}

( ) 3 m 2 1 + m 4 + 6 m 2 3 = 5 m 4 + 6 m 2 3 = 36 36 m 2 + 9 m 4 \implies (*) 3m^2 - 1 + \sqrt{m^4 + 6m^2 - 3} = 5 \implies m^4 + 6m^2 - 3 = 36 - 36m^2 + 9m^4

\implies

8 m 2 42 m 2 + 39 = 0 m 1 = 2 21 129 4 8m^2 - 42m^2 + 39 = 0 \implies m_{1} = \dfrac{\sqrt{2}\sqrt{21 - \sqrt{129}}}{4} and m 2 = 2 21 + 129 4 m_{2} = \dfrac{\sqrt{2}\sqrt{21 + \sqrt{129}}}{4}

dropping the negative roots and since m 1 > 1 m_{1} > 1 satisfies ( ) (*) \implies

m = 2 21 129 4 = a b c d m = \dfrac{\sqrt{2}\sqrt{21 - \sqrt{129}}}{4} = \dfrac{\sqrt{a}\sqrt{b - \sqrt{c}}}{d} \implies

a + b + c + d = 156 a + b + c + d = \boxed{156} .

Notice letting d ( m ) = A C r lim m d ( m ) = d(m) = \dfrac{AC}{r} \implies \lim_{m\to\infty} d(m) =

lim m 3 m 2 1 + m 4 + 6 m 2 3 m 2 ( 1 2 m 2 + 1 m 4 ) = \lim_{m\to\infty} \dfrac{3m^2 - 1 + \sqrt{m^4 + 6m^2 - 3}}{m^2(1 - \dfrac{2}{m^2} + \dfrac{1}{m^4})} =

lim m 3 1 m 2 + 1 + 6 m 2 3 m 4 1 2 m 2 + 1 m 4 = 4 1 = 4 \lim_{m\to\infty} \dfrac{3 - \dfrac{1}{m^2} + \sqrt{1 + \dfrac{6}{m^2} - \dfrac{3}{m^4}}}{1 - \dfrac{2}{m^2} + \dfrac{1}{m^4}} = \dfrac{4}{1} = 4

Shouldn't it be m = a b c d m = \cfrac{\sqrt{a}\sqrt{b - \sqrt{c}}}{d} instead of m = a b + c d m = \cfrac{\sqrt{a}\sqrt{b + \sqrt{c}}}{d} ?

David Vreken - 3 months ago

Log in to reply

Yes, it's a typing error. In my solution I used m = 2 21 129 4 m = \dfrac{\sqrt{2}\sqrt{21 - \sqrt{129}}}{4} , but in the problem I typed + + .

Rocco Dalto - 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...