What's Your Approach

Calculus Level 5

Define

f ( x ) = 1 2 tan ( x 2 ) + 1 4 tan ( x 4 ) + 1 8 tan ( x 8 ) + . f(x) = \dfrac{1}{2} \tan\left(\dfrac{x}{2}\right) + \dfrac{1}{4} \tan\left(\dfrac{x}{4}\right) + \dfrac{1}{8} \tan\left(\frac{x}{8}\right) +\cdots.

Then f ( 3 π 8 ) f\left(\dfrac{3\pi}{8}\right) can be written as a b π c + d e \dfrac{a}{b\pi^{c}} + d - \sqrt{e}

If a b \dfrac{a}{b} is in simplest form i.e. gcd ( a , b ) = 1 \gcd(a,b)=1 , and a , b , c , d , e N a,b,c,d,e\in\mathbb N , find the value of a + b + c + d + e a + b + c + d + e .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Calvin Lin Staff
Apr 15, 2015

A faster approach is to recognize that we have a telescoping sum. Because 1 2 tan x 2 = 1 2 cot x 2 cot x \frac{1}{2} \tan \frac{x}{2} = \frac{1}{2} \cot \frac{x}{2} - \cot x , we can see that the partial sums telescope to

cot x + 1 2 n cot x 2 n . - \cot x + \frac{1}{ 2^n} \cot \frac{ x}{ 2^n }.

Then, taking limits as n n \rightarrow \infty , we obtain cot x + 1 x - \cot x + \frac{ 1}{ x} .

We can thus evaluate that

f ( 3 π 8 ) = 8 3 π + 1 2 . f ( \frac{ 3 \pi } { 8} ) = \frac{ 8}{ 3 \pi } + 1 - \sqrt{ 2} .

This "explains" why the formula looks so strange, involving both a trigonometric value and an algebraic value.

Did exactly the same way!

Miraj Shah - 5 years, 2 months ago

Log in to reply

Me too....

AYUSH JAIN - 5 years ago

Did in both way as shown by calvin sir and Krishna sharma!

Ashutosh Sharma - 3 years, 4 months ago
U Z
Dec 10, 2014

P ( n ) = c o s x 2 n c o s x 2 n 1 . . . . c o s x 2 P(n) = cos\dfrac{x}{2^{n}}cos\dfrac{x}{2^{n-1}}.... cos\dfrac{x}{2}

l i m n P ( x ) lim_{n \to \infty}P(x)

P ( n ) = 2 s i n x 2 n c o s x 2 n c o s x 2 n 1 . . . . . c o s x 2 2 s i n x 2 n P(n) = \dfrac{2sin\dfrac{x}{2^{n}}cos\dfrac{x}{2^{n}}cos\dfrac{x}{2^{n-1}}..... cos\dfrac{x}{2}}{2sin\dfrac{x}{2^{n}}}

2 s i n x c o s x = s i n 2 x 2sinxcosx=sin2x

thus we get(multiplying and divivding by 2 n times and applying the above identity in each step)

l i m n P ( n ) = l i m n s i n x 2 n s i n x 2 n lim_{n \to \infty}P(n) = lim_{n \to \infty}\dfrac{sinx}{2^{n}sin\dfrac{x}{2^{n}}}

l i m n P ( n ) = l i m n s i n x 2 n s i n x 2 n x 2 n × x 2 n lim_{n \to \infty}P(n) = lim_{n \to \infty}\dfrac{sinx}{2^{n}\dfrac{sin\dfrac{x}{2^{n}}}{\dfrac{x}{2^{n}}}\times\dfrac{x}{2^{n}}}

l i m n P ( n ) = s i n x x lim_{n \to \infty}P(n) = \dfrac{sinx}{x}

Thus,

c o s x 2 c o s x 2 2 c o s x 2 3 . . . . . = s i n x x cos\dfrac{x}{2}cos\dfrac{x}{2^{2}}cos\dfrac{x}{2^{3}}..... = \dfrac{sinx}{x}

l o g c o s x 2 + l o g c o s x 2 2 + l o g c o s x 2 3 + . . . . = l o g s i n x l o g x logcos\dfrac{x}{2} + logcos\dfrac{x}{2^{2}}+ logcos\dfrac{x}{2^{3}}+.... = logsinx - logx

Differentiating,

( 1 2 t a n 1 2 + 1 4 t a n 1 4 + 1 8 t a n 1 8 + . . . . . . ) = c o t x 1 x - (\dfrac{1}{2}tan\dfrac{1}{2} + \dfrac{1}{4}tan\dfrac{1}{4} + \dfrac{1}{8}tan\dfrac{1}{8}+......) = cotx - \dfrac{1}{x}

1 2 t a n 1 2 + 1 4 t a n 1 4 + 1 8 t a n 1 8 + . . . . . . . . . . . . = c o t x + 1 x \dfrac{1}{2}tan\dfrac{1}{2}+ \dfrac{1}{4}tan\dfrac{1}{4} + \dfrac{1}{8}tan\dfrac{1}{8} + ............ = - cotx + \dfrac{1}{x}

f ( x ) = 1 x c o t x f(x) = \dfrac{1}{x} - cotx

f ( 3 π 8 ) = 8 3 π c o t ( π 2 π 8 ) f(\dfrac{3\pi}{8}) = \dfrac{8}{3\pi} - cot(\dfrac{\pi}{2} - \dfrac{\pi}{8})

f ( 3 π 8 ) = 8 3 π t a n π 8 f(\dfrac{3\pi}{8}) = \dfrac{8}{3\pi} - tan\dfrac{\pi}{8}

t a n 2 x = 2 t a n x 1 t a n 2 x tan2x = \dfrac{2tanx}{1 - tan^{2}x}

t a n π 4 = 2 t a n π 8 1 t a n 2 π 8 tan\dfrac{\pi}{4} = \dfrac{2tan\dfrac{\pi}{8}}{ 1- tan^{2}\dfrac{\pi}{8}}

1 t a n 2 π 8 = 2 t a n π 8 1 - tan^{2}\dfrac{\pi}{8} = 2tan\dfrac{\pi}{8}

2 = t a n 2 π 8 + 2 t a n π 8 + 1 2 = tan^{2}\dfrac{\pi}{8} + 2tan\dfrac{\pi}{8} + 1

1 + t a n π 8 = ± 2 1 + tan\dfrac{\pi}{8} = \pm \sqrt{2}

t a n π 8 = 2 1 tan\dfrac{\pi}{8} = \sqrt{2} - 1 ( as in first quadrant)

f ( 3 π 8 ) = 8 3 π ( 2 1 ) f(\dfrac{3\pi}{8}) = \dfrac{8}{3\pi} - ( \sqrt{2} - 1)

f ( 3 π 8 ) = 8 3 π + 1 2 f(\dfrac{3\pi}{8}) = \dfrac{8}{3\pi} + 1 - \sqrt{2}

Awesome Soln!

Kunal Gupta - 6 years, 6 months ago
Krishna Sharma
Dec 11, 2014

Here is similar but shorter method I want to share

f ( x ) = 1 2 t a n ( x 2 ) + 1 4 t a n ( x 4 ) \displaystyle f(x) = \frac{1}{2} tan(\frac{x}{2}) + \frac{1}{4} tan(\frac{x}{4}) \ldots

Integrating

f ( x ) = l n ( c o s ( x 2 ) ) l n ( c o s ( x 4 ) ) \displaystyle \int f(x) = - ln(cos(\frac{x}{2})) - ln(cos(\frac{x}{4})) - \ldots

f ( x ) = [ l n ( c o s ( x 2 ) . c o s ( x 4 ) . c o s ( x 8 ) ) ] \displaystyle \int f(x) = - \left[ ln \left( cos(\frac{x}{2}). cos(\frac{x}{4}).cos(\frac{x}{8}) \ldots \right )\right]

We have an identity

c o s ( y ) . c o s ( 2 y ) . c o s ( 4 y ) c o s ( 2 n 1 y ) = s i n ( 2 n y ) 2 n s i n ( y ) \displaystyle cos(y).cos(2y).cos(4y)\ldots cos(2^{n-1}y) = \dfrac{sin(2^{n}y)}{2^{n} sin(y)}

Here y = x 2 n y = \frac{x}{2^{n}}

We get

f ( x ) = l n ( s i n ( x ) 2 n s i n ( x 2 n ) ) \displaystyle \int f(x) = - ln(\frac{sin(x)}{2^{n} sin(\frac{x}{2^{n}})})

Here n n \to \infty

f ( x ) = l n ( s i n x x ) \displaystyle \int f(x) = -ln(\frac{sinx}{x})

Differentiating we finally get

f ( x ) = 1 x c o t ( x ) \displaystyle f(x) = \frac{1}{x} - cot(x)

f ( 3 π 8 ) = 8 3 π + 1 2 f(\frac{3\pi}{8}) = \boxed{\boxed{ \frac{8}{3\pi} + 1 - \sqrt{2} }}

A faster approach is to recognize that we have a telescoping sum. Because 1 2 tan x 2 = 1 2 cot x 2 cot x \frac{1}{2} \tan \frac{x}{2} = \frac{1}{2} \cot \frac{x}{2} - \cot x , we can see that the partial sums telescope to

cot x + 1 2 n cot x 2 n . - \cot x + \frac{1}{ 2^n} \cot \frac{ x}{ 2^n }.

Then, taking limits as n 0 n \rightarrow 0 , we obtain cot x + 1 x - \cot x + \frac{ 1}{ x} .

This "explains" why the formula looks so strange, involving both a trigonometric value and an algebraic value.

Calvin Lin Staff - 6 years, 6 months ago

Log in to reply

Thanks! For sharing I knew there are other approaches to the problem and I was interested in them that's why it was named as ' what's your approach '

Krishna Sharma - 6 years, 6 months ago

Hey I got the negative of the answer, and then just assumed it was the negative of the correct answer and got 15. Like i got f(x)=cotx-1/x. How does that extra minus sign pop up?

Can you post your solution of how do you got cotx - 1/x? Thanx!

Krishna Sharma - 6 years, 6 months ago

Log in to reply

I like everyone else integrated then derived. However i got that it was the derivative of the ln of the product of a bunch of cosines

George Friedlander - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...