When 1 over a square is subtracted from one

Algebra Level 3

( 1 1 4 ) ( 1 1 9 ) ( 1 1 16 ) ( 1 1 4072324 ) = ? \left(1-\frac 14\right) \left(1-\frac 19\right) \left(1-\frac 1{16}\right)\cdots\left(1-\frac 1{4072324}\right) =\ ?

2018 4036 \frac{2018}{4036} 2020 4036 \frac{2020}{4036} 2017 4036 \frac{2017}{4036} 2019 4036 \frac{2019}{4036}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zico Quintina
Jun 16, 2018

( 1 1 4 ) ( 1 1 9 ) ( 1 1 16 ) . . . ( 1 1 4072324 ) = ( 1 1 2 ) ( 1 + 1 2 ) ( 1 1 3 ) ( 1 + 1 3 ) ( 1 1 4 ) ( 1 + 1 4 ) . . . ( 1 1 2018 ) ( 1 + 1 2018 ) = ( 1 1 2 ) ( 1 1 3 ) ( 1 1 4 ) . . . . ( 1 1 2018 ) × ( 1 + 1 2 ) ( 1 + 1 3 ) ( 1 + 1 4 ) . . . ( 1 + 1 2018 ) = ( 1 2 ) ( 2 3 ) ( 3 4 ) . . . ( 2017 2018 ) × ( 3 2 ) ( 4 3 ) ( 5 4 ) . . . ( 2019 2018 ) = 1 2018 × 2019 2 = 2019 4036 \begin{aligned} &\left( 1 - \dfrac{1}{4} \right) \left( 1 - \dfrac{1}{9} \right) \left( 1 - \dfrac{1}{16} \right) ... \left( 1 - \dfrac{1}{4072324} \right) \\ \\ = \ &\left( 1 - \dfrac{1}{2} \right) \left( 1 + \dfrac{1}{2} \right) \left( 1 - \dfrac{1}{3} \right) \left( 1 + \dfrac{1}{3} \right) \left( 1 - \dfrac{1}{4} \right) \left( 1 + \dfrac{1}{4} \right) ... \left( 1 - \dfrac{1}{2018} \right) \left( 1 + \dfrac{1}{2018} \right) \\ \\ = \ &\left( 1 - \dfrac{1}{2} \right) \left( 1 - \dfrac{1}{3} \right) \left( 1 - \dfrac{1}{4} \right) .... \left( 1 - \dfrac{1}{2018} \right) \ \times \ \left( 1 + \dfrac{1}{2} \right) \left( 1 + \dfrac{1}{3} \right) \left( 1 + \dfrac{1}{4} \right) ... \left( 1 + \dfrac{1}{2018} \right) \\ \\ = \ &\left( \dfrac{1}{2} \right) \left( \dfrac{2}{3} \right) \left( \dfrac{3}{4} \right) ... \left( \dfrac{2017}{2018} \right) \ \times \ \left( \dfrac{3}{2} \right) \left( \dfrac{4}{3} \right) \left( \dfrac{5}{4} \right) ... \left( \dfrac{2019}{2018} \right) \\ \\ = \ &\dfrac{1}{2018} \times \dfrac{2019}{2} \\ \\ = \ &\boxed{\dfrac{2019}{4036}} \end{aligned}

Chew-Seong Cheong
Jun 15, 2018

P = ( 1 1 4 ) ( 1 1 9 ) ( 1 1 16 ) ( 1 1 4072324 ) = ( 1 1 2 2 ) ( 1 1 3 2 ) ( 1 1 4 2 ) ( 1 1 201 8 2 ) = n = 2 2018 ( 1 1 n 2 ) = n = 2 2018 n 2 1 n 2 = n = 2 2018 ( n 1 ) ( n + 1 ) n 2 = 2017 ! 2019 ! 2 ( 2018 ! ) 2 = 2019 4036 \begin{aligned} P & = \left(1 - \frac 14\right) \left(1 - \frac 19\right) \left(1 - \frac 1{16}\right) \cdots \left(1 - \frac 1{4072324}\right) \\ & = \left(1 - \frac 1{2^2}\right) \left(1 - \frac 1{3^2}\right) \left(1 - \frac 1{4^2}\right) \cdots \left(1 - \frac 1{2018^2}\right) \\ & = \prod_{n=2}^{2018} \left(1-\frac 1{n^2}\right) \\ & = \prod_{n=2}^{2018} \frac {n^2-1}{n^2} \\ & = \prod_{n=2}^{2018} \frac {(n-1)(n+1)}{n^2} \\ & = \frac {2017! \cdot 2019!}{2(2018!)^2} \\ & = \boxed{\dfrac {2019}{4036}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...