When 11 and 13 are together

Find the least possible value of m + n m+n , where m m and n n are positive integers, such that 11 divides m + 13 n m + 13n and 13 divides m + 11 n m + 11n .


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Oct 15, 2016

11 divides m + 13n m + 13 n 11 Z + m + 11 n + 2 n 11 Z + 11 n 11 + m + 2 n 11 Z + 11|(m+2n), ie 11 divides (m+2n) 11 6 ( m + 2 n ) 11 ( 6 m + 12 n ) 13|(m + 11n) m + 11 n 13 Z + 13 n + m 2 n 13 Z + 13 n 13 + m 2 n 13 Z + 13 ( m 2 n ) 13 6 m 12 n 11 | (6m + 12n) 11 | (6m + 11n + 1n) 11 | (6m + n) 13 | 6m - 12n 13 | 6m - 13n + n 13 | (6m + n) 143 ( 6 m + n ) Since HCF(13, 11) = 1, (11)(13) = 143 6 m + n = 143 k , k Z 6 m + n + 5 n = 143 k + 5 n 6 m + 6 n = 143 k + 5 n 6 ( m + n ) = 144 k + 5 n k 6 ( 144 k + 5 n k ) 6 ( 144 k + 6 n + ( n k ) ) 6 ( ( n + k ) ) 6 ( n + k ) n + k 6 let n = 5, k = 1 6 ( m + n ) = 143 k + 5 n = 138 k + 5 ( n + k ) 138 + 5 × 6 = 168 m + n 168 6 = 28 m i n ( m + n ) = 28 \text{11 divides m + 13n} \\ \implies \dfrac{m + 13n}{11} \in Z^+ \\ \dfrac{m + 11n + 2n}{11} \in Z^+ \\ \dfrac{11n}{11} + \dfrac{m + 2n}{11} \in Z^+ \\ \implies \text{11|(m+2n), ie 11 divides (m+2n)} \\ \implies 11 | 6(m+2n) \\ \boxed{\implies 11 | (6m + 12n)} \\ \text{13|(m + 11n)} \\ \implies \dfrac{m+11n}{13} \in Z^+ \\ \dfrac{13n + m - 2n}{13} \in Z^+ \\ \dfrac{13n}{13} + \dfrac{m-2n}{13} \in Z^+ \\ \implies 13 | (m-2n) \\ \boxed{\implies 13 | 6m - 12n}\\ \text{11 | (6m + 12n) }\\ \text{11 | (6m + 11n + 1n)} \\ \text{11 | (6m + n)} \\ \text{13 | 6m - 12n} \\ \text{13 | 6m - 13n + n} \\ \text{13 | (6m + n)} \\ \implies 143 | (6m+n) ~~ \boxed{\text{Since HCF(13, 11) = 1, (11)(13) = 143}} \\ \implies 6m + n = 143k, ~ k \in Z \\ 6m + n + 5n = 143k + 5n \\ 6m + 6n = 143k + 5n \\ 6(m+n) = 144k + 5n-k \\ \implies 6|(144k + 5n-k) \\ \implies 6|(144k+6n +(-n-k)) \\ \implies 6|(-(n+k))\\ \implies 6|(n+k) \\ \implies n+k \ge 6 \\ \text{let n = 5, k = 1} \\ 6(m+n) = 143k + 5n = 138k + 5(n+k) \ge 138 + 5\times 6 = 168 \\ \implies m + n \ge \dfrac{168}{6} = 28 \\ \therefore min(m+n) = 28

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...