When a Fraction Makes a Perfect Power

It is known that a b = 1 7 3 + 10 8 2 + 9910 109 a^b = \frac{17^3 + 108^2 + 9910}{109} where a , b > 1 a,b > 1 are positive integers. What is the value of a + b a + b ?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Brian Yao
Aug 21, 2020

Note that 9910 = 1 0 4 3 4 2 3 1 9910 = 10^4 - 3^4 - 2^3 - 1 , hence using the factorizations of a 3 b 3 a^3 - b^3 and a 2 b 2 a^2 - b^2 , we have 1 7 3 + 10 8 2 + 9910 = 1 7 3 + 10 8 2 + 1 0 4 3 4 2 3 1 = ( 1 7 3 2 3 ) + ( 10 8 2 1 ) + ( 1 0 4 3 4 ) = ( 17 2 ) ( 1 7 2 + 17 2 + 2 2 ) + ( 108 1 ) ( 108 + 1 ) + ( 1 0 2 3 2 ) ( 1 0 2 + 3 2 ) = ( 15 ) ( 327 ) + ( 107 ) ( 109 ) + ( 91 ) ( 109 ) = 109 ( 15 3 + 107 + 91 ) = 109 243 = 3 5 109 \begin{aligned} 17^3 + 108^2 + 9910 & = 17^3 + 108^2 + 10^4 - 3^4 - 2^3 - 1 \\ & = (17^3 - 2^3) + (108^2 - 1) + (10^4 - 3^4) \\& = (17 - 2)(17^2 + 17 \cdot 2 + 2^2) + (108 - 1)(108 + 1) + (10^2 - 3^2)(10^2 + 3^2) \\& = (15)(327) + (107)(109) + (91)(109) \\& = 109(15 \cdot 3 + 107 + 91) \\& = 109 \cdot 243 \\& = 3^5 \cdot 109 \end{aligned} Thus, 1 7 3 + 10 8 2 + 9910 109 = 3 5 , \frac{17^3 + 108^2 + 9910}{109} = 3^5, so a = 3 a = 3 and b = 5 b = 5 , making the answer a + b = 3 + 5 = 8 a + b = 3 + 5 = 8 .

Wonderful!

Edward Christian - 9 months, 3 weeks ago
Pop Wong
Aug 30, 2020

109 a b = 1 7 3 + 10 8 2 + 9910 109 \cdot a^b = 17^3 + 108^2 + 9910

  • Note that 1 7 3 17 1 , 108 0 , 9910 = 9909 + 1 1 ( m o d 3 ) 17^3 \equiv 17 \equiv -1 , 108 \equiv 0, 9910 = 9909 + 1 \equiv 1 \pmod{3}

1 7 3 + 10 8 2 + 9910 = ( 18 1 ) 3 + ( 2 2 3 3 ) 2 + 9909 + 1 = ( 2 3 2 1 ) 3 + 2 4 3 6 + 367 3 3 + 1 = 2 3 3 6 3 2 2 3 4 + 3 2 3 2 1 + 2 4 3 6 + 367 3 3 + 1 = ( 2 3 + 2 4 ) 3 6 2 2 3 5 + ( 2 + 367 ) 3 3 = ( 24 × 3 ) 3 5 4 3 5 + ( 41 × 3 2 ) 3 3 = ( 72 4 + 41 ) 3 5 = 109 3 5 \begin{aligned} 17^3 + 108^2 + 9910 &= (18-1)^3 + (2^2\cdot 3^3)^2 + 9909 +1 = (2\cdot 3^2 - 1)^3 + 2^4\cdot 3^6 + 367 \cdot 3^3 + 1 \\ &= 2^3\cdot 3^6 - 3\cdot 2^2 \cdot 3^4 + 3 \cdot 2 \cdot 3^2 -\cancel{1 }+ 2^4\cdot 3^6 + 367 \cdot 3^3 +\cancel{1} \\ &= (2^3 + 2^4) 3^6 - 2^2 \cdot 3^5 + (2 +367 ) 3^3 \\ &= (24 \times 3) 3^5 - 4 \cdot 3^5 + (41 \times 3^2 ) 3^3\\ &= (72-4+41) 3^5\\ &= 109 \cdot 3^5 \end{aligned}

a = 3 , b = 5 , a + b = 3 + 5 = 8 \therefore a = 3, b=5, a+b = 3+5 = \boxed{8}

Lâm Lê
Aug 21, 2020

1 7 3 + 10 8 2 + 9910 = 4913 + 11664 + 9910 = 26487 17^3+108^2+9910=4913+11664+9910=26487

26487 109 = 243 \frac{26487}{109}=243

243 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 = 2 8 = 0.949 243/2/2/2/2/2/2/2/2=2^8=0.949\ldots

243 / 3 / 3 / 3 / 3 / 3 = 3 5 = 1 243/3/3/3/3/3=3^5=\boxed{1}

3 + 5 = 8 3+5=8


*Author’s Notes*: \text{*Author's Notes*:}

All calculations were done on a calculator except for the last one \text{All calculations were done on a calculator except for the last one}

All of this is \text{All of this is} L a T e X ed LaTeX\text{ed}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...