When Algebra is on the mod

Level 2

Find the smallest positive integer x x satisfying the equation x 2 4 x + 56 14 (mod 17) x^2 - 4x+56 \equiv 14 \text{ (mod 17)} .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anirudh Sreekumar
Aug 21, 2018

x 2 4 x + 56 14 ( m o d 17 ) x 2 4 x + 42 0 ( m o d 17 ) x 2 4 x + 42 + 17 x 0 ( m o d 17 ) x 2 + 13 x + 42 0 ( m o d 17 ) ( x + 6 ) ( x + 7 ) 0 ( m o d 17 ) x 6 ( m o d 17 ) 11 ( m o d 17 ) or x 7 ( m o d 17 ) 10 ( m o d 17 ) Since we need the minimum postive value for x, we have , x = 10 \begin{aligned} x^2 - 4x + 56 & \equiv 14\pmod {17} \\ x^2 - 4x + 42 & \equiv 0 \pmod {17} \\x^2 - 4x + 42 +17x & \equiv 0\pmod {17} \\ x^2 +13x + 42 & \equiv 0 \pmod {17}\\(x+6)(x+7) &\equiv 0\pmod {17}\\ \implies x &\equiv-6\pmod {17}\equiv 11\pmod {17} \color{#3D99F6}\text{ or}\\ x &\equiv-7\pmod {17}\equiv 10\pmod {17}\\ \text{Since we need the minimum } &\text{postive value for x, we have ,}\\ x&=\color{#EC7300}\boxed{\color{#333333}10}\end{aligned}

Chew-Seong Cheong
Aug 21, 2018

x 2 4 x + 56 14 (mod 17) ( x 2 ) 2 + 52 14 (mod 17) ( x 2 ) 2 + 1 14 (mod 17) ( x 2 ) 2 13 (mod 17) Note that ( x 2 ) 2 > 30 x > 7 64 13 (mod 17) x = 10 \begin{aligned} x^2 - 4x + 56 & \equiv 14 \text{ (mod 17)} \\ (x-2)^2 + 52 & \equiv 14 \text{ (mod 17)} \\ (x-2)^2 + 1 & \equiv 14 \text{ (mod 17)} \\ (x-2)^2 & \equiv 13 \text{ (mod 17)} & \small \color{#3D99F6} \text{Note that }(x-2)^2 > 30 \implies x > 7 \\ 64 & \equiv 13 \text{ (mod 17)} \\ \implies x & = \boxed{10} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...