Find the smallest positive integer x satisfying the equation x 2 − 4 x + 5 6 ≡ 1 4 (mod 17) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
x 2 − 4 x + 5 6 ( x − 2 ) 2 + 5 2 ( x − 2 ) 2 + 1 ( x − 2 ) 2 6 4 ⟹ x ≡ 1 4 (mod 17) ≡ 1 4 (mod 17) ≡ 1 4 (mod 17) ≡ 1 3 (mod 17) ≡ 1 3 (mod 17) = 1 0 Note that ( x − 2 ) 2 > 3 0 ⟹ x > 7
Problem Loading...
Note Loading...
Set Loading...
x 2 − 4 x + 5 6 x 2 − 4 x + 4 2 x 2 − 4 x + 4 2 + 1 7 x x 2 + 1 3 x + 4 2 ( x + 6 ) ( x + 7 ) ⟹ x x Since we need the minimum x ≡ 1 4 ( m o d 1 7 ) ≡ 0 ( m o d 1 7 ) ≡ 0 ( m o d 1 7 ) ≡ 0 ( m o d 1 7 ) ≡ 0 ( m o d 1 7 ) ≡ − 6 ( m o d 1 7 ) ≡ 1 1 ( m o d 1 7 ) or ≡ − 7 ( m o d 1 7 ) ≡ 1 0 ( m o d 1 7 ) postive value for x, we have , = 1 0