When all's unknown

Calculus Level 5

f ( x ) = a x 3 + b x 2 + c x + d \large{ f(x) = ax^3 + bx^2 + cx + d}

The Taylor Series expansion of f ( x ) f(x) about x = a x= a is

d 6 ( x a ) 3 + ( 3 a + b + 2 d ) ( x a ) 2 + ( 3 a 2 + c + 6 d ) ( x a ) \frac{d}{6}(x- a)^3 + (3a + b + 2d)(x- a)^2 + (3a^2 + c + 6d)(x - a)

Determine the product a b c d abcd , where a a , b b , c c , and d d are distinct, nonzero, coprime (not necessarily pairwise) integers.


The answer is 127800.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

It is noted that the Taylor series expansion of f ( x ) f(x) about x = a x=a is same as f ( x ) = a x 3 + b x 2 + c x + d f(x) = ax^3 + bx^2 + cx + d . (I actually found out by evaluating n = 0 3 f ( n ) ( a ) ( x a ) n ! \sum_{n=0}^3 \frac {f^{(n)}(a)(x-a)}{n!} ) . Therefore, we have:

d 6 ( x a ) 3 + ( 3 a + b + 2 d ) ( x a ) 2 + ( 3 a 2 + c + 6 d ) ( x a ) = a x 3 + b x 2 + c x + d \frac{d}{6}(x- a)^3 + (3a + b + 2d)(x- a)^2 + (3a^2 + c + 6d)(x - a) = ax^3 + bx^2 + cx + d

Equating coefficients, we have:

For x 3 x^3 : d 6 = a d = 6 a d 6 ( x a ) 3 = a ( x a ) 3 \quad \dfrac d6 = a \implies \color{#3D99F6}{d = 6a} \implies \dfrac d6 (x-a)^3 = a(x-a)^3

For x 2 x^2 : 3 a 2 + 3 a + b + 2 d = b 3 a 2 + 15 a = 0 a = 5 d = 30 \quad -3a^2 + 3a + b + 2d = b \implies - 3a^2 + 15a = 0 \implies \color{#3D99F6}{a = 5} \implies \color{#3D99F6}{d = 30}

For x x :

3 a 3 2 a ( 3 a + b + 2 d ) + 3 a 2 + c + 6 d = c 3 a 2 2 ( 15 a + b ) + 3 a + 36 = 0 75 150 2 b + 15 + 36 = 0 b = 12 \begin{aligned} 3a^3 -2a(3a + b + 2d) + 3a^2 + c + 6d & = c \\ 3a^2 -2(15a + b) + 3a + 36 & = 0 \\ 75 - 150 - 2b + 15 + 36 & = 0 \\ \implies \color{#3D99F6}{b} & \color{#3D99F6}{=-12} \end{aligned}

For constant:

a 4 + a 2 ( 3 a + b + 2 d ) a ( 3 a 2 + c + 6 d ) = d a 3 + a ( 3 a + b + 2 d ) ( 3 a 2 + c + 6 d ) = 6 125 + 315 255 c = 6 c = 71 \begin{aligned} -a^4 + a^2(3a + b + 2d) - a(3a^2 + c + 6d) & = d \\ -a^3 + a(3a + b + 2d) - (3a^2 + c + 6d) & = 6 \\ -125 + 315 - 255 - c & = 6 \\ \implies \color{#3D99F6}{c} & \color{#3D99F6}{=-71} \end{aligned}

a b c d = ( 5 ) ( 12 ) ( 71 ) ( 30 ) = 127800 \implies abcd = (5)(-12)(-71)(30) = \boxed{127800}

Efren Medallo
Aug 8, 2016

Recall the general form of the Taylor Series expansion of any function f ( x ) f(x) at x = a x\: = \: a .

n = 0 f ( n ) ( a ) n ! ( x a ) n \large { \sum_{n=0}^{\infty} \frac{f^{(n)} (a)}{n!}(x-a)^{n} }

For polynomial functions of degree p p , this expansion will terminate when n = p n= \: p , as the ( p ) t h (p)^{th} derivative of this polynomial will be constant.

Let us first see the derivatives of f ( x ) f(x) .

f ( 0 ) ( x ) = a x 3 + b x 2 + c x + d f^{(0)} (x) = \: ax^3 \: + \: bx^2 \: +\: cx\: + \: d

f ( 1 ) ( x ) = 3 a x 2 + 2 b x + c f^{(1)} (x)= \: 3ax^2 \: + \: 2bx \: +\: c

f ( 2 ) ( x ) = 6 a x + 2 b f^{(2)} (x)= \: 6ax \: + \: 2b

f ( 3 ) ( x ) = 6 a f^{(3)} (x)= \: 6a

f ( 4 ) ( x ) = 0 f^{(4)} (x)= \: 0 ...

Substituting x = a x=\: a , we get

f ( 0 ) ( a ) = a 4 + a 2 b + a c + d f^{(0)} (a) = \: a^4 \: + \: a^2b \: +\: ac\: + \: d

f ( 1 ) ( a ) = 3 a 3 + 2 a b + c f^{(1)} (a)= \: 3a^3 \: + \: 2ab \: +\: c

f ( 2 ) ( a ) = 6 a 2 + 2 b f^{(2)} (a)= \: 6a^2 \: + \: 2b

f ( 3 ) ( a ) = 6 a f^{(3)} (a)= \: 6a

Now, plugging this into the summation, we get

f ( x ) = f ( 0 ) ( a ) + f ( 1 ) ( a ) ( x a ) + f ( 2 ) ( a ) 2 ! ( x a ) 2 + f ( 3 ) ( a ) 3 ! ( x a ) 3 f(x) = f^{(0)} (a) \: +\: f^{(1)} (a) \cdot (x\: - \: a) \: + \: \frac{ f^{(2)} (a)}{2!} \cdot (x\: - \: a)^2 \: + \: \frac{ f^{(3)} (a)}{3!} \cdot (x\: - \: a)^3 \:

f ( x ) = ( a 4 + a 2 b + a c + d ) + ( 3 a 3 + 2 a b + c ) ( x a ) + 6 a 2 + 2 b 2 ! ( x a ) 2 + 6 a 3 ! ( x a ) 3 f(x) = {(a^4+a^2b+ac+d)} \: + \: {(3a^3+2ab+c)}\cdot(x - a) \: +\: {\frac{6a^2+2b}{2!}}\cdot (x - a)^2 \:+\: \frac{6a}{3!} \cdot (x - a)^3

f ( x ) = ( a 4 + a 2 b + a c + d ) + ( 3 a 3 + 2 a b + c ) ( x a ) + ( 3 a 2 + b ) ( x a ) 2 + a ( x a ) 3 f(x) = (a^4+a^2b+ac+d) \: + \: (3a^3+2ab+c)\cdot(x - a) \: +\: (3a^2 + b)(x - a)^2 \:+\: a \cdot (x - a)^3

From here, we get the correspondence from the given expansion in the problem

(1) a = d 6 a\:=\: \frac{d}{6}

(2) 3 a 2 + b = 3 a + b + 2 d 3a^2 + b\: =\: 3a + b + 2d

(3) 3 a 3 + 2 a b + c = 3 a 2 + c + 6 d 3a^3+2ab+c \: =\: 3a^2 + c + 6d

(4) a 4 + a 2 b + a c + d = 0 a^4+a^2b+ac+d \:=\: 0

Modifying (1) a bit and using d = 6 a d = 6a to substitute for (2)..

we get

3 a 2 = 15 a 3a^2 \: =\: 15a , or a = 5 \boxed{ a \: = \: 5} . Then we get d = 30 \boxed { d \: =\: 30 } .

Substituting both for (3), we get b = 12 \boxed { b \: =\: -12 } . Ultimately, we will get c = 71 \boxed { c \: =\: -71 } by substituting all these values into (4).

And bingo, 5 12 71 30 = 127800 \boxed {5 \cdot -12 \cdot -71 \cdot 30 \: = \: 127800 }

That is, the polynomial f ( x ) f(x) is actually

5 x 3 12 x 2 71 x + 30 \large { 5x^3 - 12x^2 - 71x + 30}

and its Taylor series expansion about x = 5 x\: = \: 5 is

5 ( x 5 ) 3 + 63 ( x 5 ) 2 + 184 ( x 5 ) \large { 5(x-5)^3 + 63(x-5)^2 + 184(x-5) }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...