When do quadratics have roots?

Algebra Level 3

Is it ever correct (true at least once) to make the following statement about quadratic equations?

There is at least one equation of the form x 2 + a x + b = c x^2+ax+b=c (where a , b , c R a,b,c \in \mathbb{R} ) with roots r 1 , r 2 R , r_1, r_2 \in \mathbb{R}, such that r 1 > r 2 |r_1| > |r_2| , b c b \ne c , and r 1 2 r 2 2 = r 1 r 1 r 2 r_1^2-r_2^2=|r_1| \cdot |r_1-r_2| .

Not enough information \text{Not enough information} Always true \text{Always true} Always false \text{Always false} True only when r 1 = r 2 \text{True only when }r_1=r_2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

(r1)^2-(r2^2)=|r1||r1-r2| implies 2(r1)(r2)+(r2)^2=0 or r2=0 (since |r1|>|r2|) This implies a^2-4(b-c)=a^2 or b=c. But this leads to a contradiction, as it is told that b and c are distinct.

Akeel Howell
Apr 5, 2019

We proceed via proof by contradiction:

Assume on the contrary, that there is at least one equation x 2 + a x + b c = 0 x^2+ax+b-c=0 with roots r 1 , r 2 R r_1, r_2 \in \mathbb{R} , and that all other conditions of this problem are satisfied. Then there exists a pair of real numbers r 1 r_1 and r 2 r_2 such that ( x r 1 ) ( x r 2 ) = x 2 ( r 1 + r 2 ) x + r 1 r 2 = x 2 + a x + b c = 0 (x-r_1 )(x-r_2 )=x^2-(r_1+r_2 )x+r_1 r_2=x^2+ax+b-c=0 . By completing the square, we see that this implies that ( x + a 2 ) 2 + b c ( a 2 ) 2 = 0 x = a 2 ± ( a 2 ) 2 b + c \left(x+\dfrac{a}{2}\right)^2+b-c-\left(\dfrac{a}{2}\right)^2 = 0 \implies x=-\dfrac{a}{2} \pm \sqrt{\left(\dfrac{a}{2}\right)^2-b+c} .

Without loss of generality, take r 1 = a 2 ( a 2 ) 2 b + c r_1=-\dfrac{a}{2}-\sqrt{\left(\dfrac{a}{2}\right)^2-b+c} and r 2 = a 2 + ( a 2 ) 2 b + c r_2=-\dfrac{a}{2}+\sqrt{\left(\dfrac{a}{2}\right)^2-b+c} . We see that r 1 2 r 2 2 = [ a 2 ( a 2 ) 2 b + c ] 2 [ a 2 + ( a 2 ) 2 b + c ] 2 = [ ( a 2 ) 2 + a ( a 2 ) 2 b + c + ( a 2 ) 2 b + c ] [ ( a 2 ) 2 a ( a 2 ) 2 b + c + ( a 2 ) 2 b + c ] r 1 2 r 2 2 = 2 a ( a 2 ) 2 b + c . r_1^2-r_2^2 = \left[-\dfrac{a}{2}-\sqrt{\left(\dfrac{a}{2}\right)^2-b+c} \space \right]^2 - \left[-\dfrac{a}{2}+\sqrt{\left(\dfrac{a}{2}\right)^2-b+c} \space \right]^2 \\ = \left[ \left(\dfrac{a}{2}\right)^2 + a\sqrt{\left(\dfrac{a}{2}\right)^2-b+c} + \left(\dfrac{a}{2}\right)^2-b+c \space \right] - \left[ \left(\dfrac{a}{2}\right)^2-a\sqrt{\left(\dfrac{a}{2}\right)^2-b+c} + \left(\dfrac{a}{2}\right)^2 - b + c \space \right] \\ \therefore r_1^2-r_2^2 = 2a\sqrt{\left(\dfrac{a}{2}\right)^2-b+c}. Now we check the value of r 1 r 1 r 2 |r_1 |⋅|r_1-r_2 | :

a 2 ( a 2 ) 2 b + c ( a 2 a ( a 2 ) 2 b + c ) ( a 2 + ( a 2 ) 2 b + c ) = ( a 2 ( a 2 ) 2 b + c ) ( 2 ( a 2 ) 2 b + c ) = ( a ( a 2 ) 2 b + c + 2 [ ( a 2 ) 2 b + c ] ) = ( 2 ( a 2 ) 2 b + c ) a 2 + ( a 2 ) 2 b + c . \left| -\dfrac{a}{2}-\sqrt{\left(\dfrac{a}{2}\right)^2-b+c} \space \right| \cdot \left| \left(-\dfrac{a}{2}-a\sqrt{\left(\dfrac{a}{2}\right)^2-b+c} \space \right)-\left(-\dfrac{a}{2}+\sqrt{\left(\dfrac{a}{2}\right)^2-b+c} \space \right) \right| \\ =\left| \left(-\dfrac{a}{2}-\sqrt{\left(\dfrac{a}{2}\right)^2-b+c} \space \right) \left(-2\sqrt{\left(\dfrac{a}{2}\right)^2-b+c}\space \right) \right| \\ =\left| \left(a\sqrt{\left(\dfrac{a}{2}\right)^2-b+c}+2\left[\left( \dfrac{a}{2} \right)^2-b+c\right] \space \right) \right| \\ =\left(2\sqrt{\left(\dfrac{a}{2}\right)^2-b+c} \space \right) \left| \dfrac{a}{2}+\sqrt{\left(\dfrac{a}{2}\right)^2-b+c} \space \right|. Taking r 1 2 r 2 2 = r 1 r 1 r 2 r_1^2-r_2^2=|r_1 |⋅|r_1-r_2 | leaves us with the following: 2 a ( a 2 ) 2 b + c = ( 2 ( a 2 ) 2 b + c ) a 2 + ( a 2 ) 2 b + c a = a 2 + ( a 2 ) 2 b + c a = 2 ( a 2 ) 2 b + c . 2a\sqrt{\left(\dfrac{a}{2}\right)^2-b+c} = \left(2\sqrt{\left(\dfrac{a}{2}\right)^2-b+c} \space \right) \left| \dfrac{a}{2}+\sqrt{\left(\dfrac{a}{2}\right)^2-b+c} \space \right| \\ \therefore a = \dfrac{a}{2}+\sqrt{\left(\dfrac{a}{2}\right)^2-b+c} \implies a = 2\sqrt{\left(\dfrac{a}{2}\right)^2-b+c}.

Of course, the equation a = 2 ( a 2 ) 2 b + c a=2\sqrt{\left(\dfrac{a}{2}\right)^2-b+c} can only make sense if b = c b = c , which contradicts the assumption that b c b \ne c . Hence, the statement is always false.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...