When Does The Integral Converge?

Calculus Level 5

0 ( cos 2 x ) x n d x \large \displaystyle \int_{0}^{\infty} \left( \cos^2{x} \right)^{ \large x^n}dx

The integral above converges for every n n greater than k k . Find the smallest possible value of k k

Maybe do this before: Limit of a weird Integral


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pedro Cardoso
Aug 6, 2019

To get started, since 0 cos 2 ( x ) 1 0 \leq \cos^2(x) \leq 1 , we have

0 ( cos 2 x ) ( π x π ) n d x < 0 ( cos 2 x ) x n d x < 0 ( cos 2 x ) ( π x π ) n d x \large \int_0^{\infty}\left(\cos^2x\right)^{ \left( \pi\left \lceil{\frac{x}{\pi}}\right \rceil \right)^{n}}dx<\int_0^{\infty}\left(\cos^2x\right)^{x^n}dx<\int_0^{\infty}\left(\cos^2x\right)^{\left( \pi\left \lfloor\frac{x}{\pi}\right \rfloor \right)^{n}}dx

Now we can break the integrals into sums

j = 1 0 π ( cos 2 x ) ( j π ) n d x < 0 ( cos 2 x ) x n d x < j = 0 0 π ( cos 2 x ) ( j π ) n d x \large \sum_{j=1}^{\infty}\int_0^{\pi}\left(\cos^2x\right)^{\left(j\pi\right)^n}dx<\int_0^{\infty}\left(\cos^2x\right)^{x^n}dx<\sum_{j=0}^{\infty}\int_0^{\pi}\left(\cos^2x\right)^{\left(j\pi\right)^n}dx

Since cos ( x ) \cos(x) is periodic, we can shift the integrals

j = 1 π 2 π 2 ( cos 2 x ) ( j π ) n d x < 0 ( cos 2 x ) x n d x < j = 0 π 2 π 2 ( cos 2 x ) ( j π ) n d x \large \sum_{j=1}^{\infty}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\cos^2x\right)^{\left(j\pi\right)^n}dx<\int_0^{\infty}\left(\cos^2x\right)^{x^n}dx<\sum_{j=0}^{\infty}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\cos^2x\right)^{\left(j\pi\right)^n}dx

Which means the integral converges if and only if j = 1 π 2 π 2 ( cos 2 x ) ( j π ) n d x \displaystyle \sum_{j=1}^{\infty}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\cos^2x\right)^{\left(j\pi\right)^n}dx converges

Now, to make an upper bound, we can use the very good approximation e x 2 cos 2 ( x ) e^{-x^2} \geq \cos^2(x) . To make a lower bound, we can use a rough, but still useful e 2 x 2 cos 2 ( x ) e^{-2x^2} \leq \cos^2(x) . Both hold in the interval ( π 2 , π 2 ) (-\frac{\pi}{2},\frac{\pi}{2}) . We get

j = 1 π 2 π 2 e 2 ( j π ) n x 2 d x < j = 1 π 2 π 2 ( cos 2 x ) ( j π ) n d x < j = 1 π 2 π 2 e ( j π ) n x 2 d x \large \sum_{j=1}^{\infty}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}e^{-2\left(j\pi\right)^nx^2}dx<\sum_{j=1}^{\infty}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\cos^2x\right)^{\left(j\pi\right)^n}dx<\sum_{j=1}^{\infty}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}e^{-\left(j\pi\right)^nx^2}dx

Now, its not very hard to show that 1 2 e 2 ( j π ) n x 2 d x < π 2 π 2 e 2 ( j π ) n x 2 d x \large \displaystyle \frac{1}{2}\int_{-\infty}^{\infty}e^{-2\left(j\pi\right)^nx^2}dx<\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}e^{-2\left(j\pi\right)^nx^2}dx , so I'll skip this step to make this solution less cumbersome. If you want to get a feel for it, I'd suggest looking at the graph of the integrand. Also, e ( j π ) n x 2 d x > π 2 π 2 e ( j π ) n x 2 d x \large \displaystyle \int_{-\infty}^{\infty}e^{-\left(j\pi\right)^nx^2}dx>\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}e^{-\left(j\pi\right)^nx^2}dx . This gives us

1 2 j = 1 e 2 ( j π ) n x 2 d x < j = 1 π 2 π 2 ( cos 2 x ) ( j π ) n d x < j = 1 e ( j π ) n x 2 d x \large \frac{1}{2}\sum_{j=1}^{\infty}\int_{-\infty}^{\infty}e^{-2\left(j\pi\right)^nx^2}dx<\sum_{j=1}^{\infty}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\cos^2x\right)^{\left(j\pi\right)^n}dx<\sum_{j=1}^{\infty}\int_{-\infty}^{\infty}e^{-\left(j\pi\right)^nx^2}dx

Solving the gaussian integrals, we get

1 2 j = 1 π 2 ( j π ) n < j = 1 π 2 π 2 ( cos 2 x ) ( j π ) n d x < j = 1 π ( j π ) n \large \frac{1}{2}\sum_{j=1}^{\infty}\sqrt{\frac{\pi}{2\left(j\pi\right)^n}}<\sum_{j=1}^{\infty}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\cos^2x\right)^{\left(j\pi\right)^n}dx<\sum_{j=1}^{\infty}\sqrt{\frac{\pi}{\left(j\pi\right)^n}}

Which shows the term in the middle converges if and only if π 1 n j = 1 1 j n 2 \displaystyle \large \sqrt{\pi^{1-n}}\sum_{j=1}^{\infty}\frac{1}{j^{\frac{n}{2}}} also converges, which converges if and only if ζ ( n 2 ) \zeta ( \frac{n}{2} ) also converges.

But ζ ( x ) \zeta(x) converges for every x > 1 x > 1 , so our initial integral converges for every n n greater than 2 \boxed{2} .

Bonus: It turns out π 1 n ζ ( n 2 ) \sqrt{\pi^{1-n}}\zeta(\frac{n}{2}) is actually a pretty good approximation to π ( cos 2 x ) x n d x \displaystyle \large \int_{\pi}^{\infty}\left(\cos^2x\right)^{x^n}dx . The first term, 0 π ( cos 2 x ) x n d x \displaystyle \large \int_{0}^{\pi}\left(\cos^2x\right)^{x^n}dx goes to 1 1 as you can see here , but it approaches slowly.

I do not know whether this is a solution or not .

But I think that it is an analogy.

Let us think of the series r = 1 ( c o s ( r ) ) 2 r n \sum_{r=1}^{\infty} (cos(r))^{2r^{n}} .

Now by applying Cauchy's root test we see that the series converges for n 1 n \geq 1 .

But in the series we see that ( c o s ( r ) ) 2 r n (cos(r))^{2r^{n}} is never equal to 1 1 for any r r and n 1 n \geq 1 .

But in the case of the integral, the function would have values of 1 when say x = k . π x=k.\pi .

So to eliminate that possibility we take n 2 n \geq 2 . Hence we arrive at the answer that the smallest possible k k is 2 2

Théo Leblanc
Aug 20, 2019

I will give a very intuitive (and not rigorous) explanation.

Clearly, if n 0 n\leq 0 the integral diverges. So let n > 0 n>0 .

Because cos ( x ) < 1 |\cos(x)|<1 except for all x = k π , k N x=k\pi, \ k\in\mathbb{N} where it is one, and x n x + + , ( cos 2 ( x ) ) x n x^n\underset{x\to +\infty}{\longrightarrow}+\infty, \quad (\cos^2(x))^{x^n} goes to 0 0 super fast except on the points k π k\pi where is remains 1 1 .

I will not, but you can prove that if you remove all the intervals [ k π ε ; k π + ε ] [k\pi-\varepsilon;k\pi+\varepsilon] for ε > 0 \varepsilon>0 the integral converges for all n > 0 n>0 . (It is because we have now this inequality: cos ( x ) a < 1 |\cos(x)|\leq a<1 for some a a .)

Therefore the heart of the matter is around the points x = k π x=k\pi where there are some little peaks of height 1 1 . I will try to estimate there width.

Around k π , ( x 1 ) , cos ( k π + x ) 1 x 2 2 k\pi, \ (|x|\ll 1), \ |\cos(k\pi +x)| \approx 1-\frac{x^2}{2} .

So,

( cos 2 ( k π + x ) ) ( k π + x ) n ( 1 x 2 2 ) 2 ( k π ) n = e 2 ( k π ) n ln ( 1 x 2 2 ) e ( k π ) n x 2 \begin{aligned} (\cos^2(k\pi+x))^{(k\pi+x)^n} & \approx (1-\frac{x^2}{2})^{2(k\pi)^n}\\ &=e^{2(k\pi)^n\ln(1-\frac{x^2}{2})}\\ &\approx e^{-(k\pi)^n x^2} \end{aligned}

Roughly the peak exists where ( k π ) n x 2 1 (k\pi)^n x^2\leq 1 (either the decreasing exponential is almost 0 0 ) ie for x 1 ( k π ) n / 2 |x|\leq \frac{1}{(k\pi)^{n/2}} . That gives us the width.

Resume; peak at k π k\pi :

  • height 1 1
  • width 1 k n / 2 \approx \frac{1}{k^{n/2}}
  • A r e a 1 k n / 2 \Rightarrow \ Area\approx \frac{1}{k^{n/2}}

So intuitively, our integral behaves like k = 1 + 1 k n / 2 \displaystyle\sum_{k=1}^{+\infty}\frac{1}{k^{n/2}} which converges if and only if n > 2 \boxed{n>2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...