sin 4 x + cos 4 x + 1 sin 6 x + cos 6 x + 1
Let the minimum value of the expression above be a for real x . Calculate the value of a 1 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Consider
( sin 2 x + cos 2 x ) 3 1 3 ⟹ sin 6 x + cos 6 x ⟹ sin 4 x + cos 4 x = sin 6 x + 3 sin 4 x cos 2 x + 3 sin 2 x cos 4 x + cos 6 x = sin 6 x + 3 sin 2 x cos 2 x ( sin 2 x + cos 2 x ) + cos 6 x = sin 6 x + 3 sin 2 x cos 2 x + cos 6 x = 1 − 3 sin 2 x cos 2 x = 1 − 2 sin 2 x cos 2 x Recall sin 2 x + cos 2 x = 1 Similarly
Hence we have:
X = sin 4 x + cos 4 x + 1 sin 6 x + cos 6 x + 1 = 2 − 2 sin 2 x cos 2 x 2 − 3 sin 2 x cos 2 x = 1 − 2 − 2 sin 2 x cos 2 x sin 2 x cos 2 x = 1 − sin 2 x cos 2 x 2 − 2 1 = 1 − sin 2 2 x 8 − 2 1 Since sin 2 θ = 2 sin θ cos θ
Note that X is minimum, when ∣ ∣ ∣ ∣ sin 2 2 x 8 − 2 ∣ ∣ ∣ ∣ is minimum. That is when sin 2 2 x = 1 and ∣ ∣ ∣ ∣ sin 2 2 x 8 − 2 ∣ ∣ ∣ ∣ = 6 , ⟹ min ( X ) = 1 − 6 1 = 6 5 . Therefore, a = 6 5 ⟹ a 1 = 5 6 = 1 . 2 .
sin 6 x + cos 6 x + 1 = ( sin 2 x + cos 2 x ) 3 − 3 ( cos 4 x sin 2 x + cos 2 x sin 4 x ) + 1 = 2 − 3 ( sin 2 x + cos 2 x ) sin 2 x cos 2 x = 2 − 3 ( sin x cos x ) 2
sin 4 x + cos 4 x + 1 = ( sin 2 x + cos 2 x ) 2 − 2 sin 2 x cos 2 x + 1 = 2 − 2 ( sin x cos x ) 2
Let ( sin x cos x ) 2 = y , then the fraction we have to minimize is equal to 2 − 2 y 2 − 3 y
y = ( sin x cos x ) 2 = 4 sin 2 ( 2 x ) , so 0 ≤ y ≤ 4 1
Since 2 − 2 y 2 − 3 y decreases when 0 ≤ y ≤ 4 1 , we just have to put y = 4 1 to get the minimum which is equal to 6 5
sin 4 ( x ) + cos 4 ( x ) + 1 sin 6 ( x ) + cos 6 ( x ) + 1 ⟹ 2 ( cos ( 4 x ) + 7 ) 3 cos ( 4 x ) + 1 3
Realizing at I could substitute a variable for cos 4 x and restrict that variable's values to the interval [-1,1], then I realized that the expression was increasing through that interval and the minimum would be at the beginning of the interval, I evaluated the expression at that value and received the value of 6 5 . Therefore, the desired value is 5 6 or 1.2.
Using “keisan Advance Calculator “ in degrees.
x=10, 10, 8, 40<x<50, for minimum.
x= 40,1,50. x=.8333333=n.
1/n=1.2
Problem Loading...
Note Loading...
Set Loading...
Letting t = sin 2 x , we are asked to minimise t 2 + ( 1 − t ) 2 + 1 t 3 + ( 1 − t ) 3 + 1 = 2 t 2 − 2 t + 2 3 t 2 − 3 t + 2 = 2 3 − 2 ( t 2 − t + 1 ) 1 for 0 ≤ t ≤ 1 . The minimum a = 6 5 is attained at t = 2 1 , when t 2 − t is minimal. Thus the answer is a 1 = 1 . 2 .