When I'm gone

Geometry Level 4

Let 0 α , β , γ 9 0 0^{\circ}\leq\alpha,\beta,\gamma\leq90^{\circ} be angles such that sin α cos β = tan γ \sin\alpha-\cos\beta=\tan\gamma sin β cos α = cot γ \sin\beta-\cos\alpha=\cot\gamma

and γ 1 , γ 2 , , γ i \gamma_{1},\gamma_{2},\ldots,\gamma_{i} are different possible values of γ \gamma .Find

i = 1 n γ i \displaystyle\sum_{i=1}^{n}\gamma_{i}


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kenny Lau
Aug 17, 2015

Multiplying both expressions together gives: ( sin α cos β ) ( sin β cos α ) = tan γ cot γ = 1 (\sin\alpha-\cos\beta)(\sin\beta-\cos\alpha)=\tan\gamma\cot\gamma=1

The LHS:

( sin α cos β ) ( sin β cos α ) \quad(\sin\alpha-\cos\beta)(\sin\beta-\cos\alpha)

= cos α cos β + sin α sin β sin α cos α sin β cos β =\cos\alpha\cos\beta+\sin\alpha\sin\beta-\sin\alpha\cos\alpha-\sin\beta\cos\beta

= cos ( α β ) 1 2 sin 2 α 1 2 sin 2 β =\cos(\alpha-\beta)-\frac12\sin2\alpha-\frac12\sin2\beta (Using compound angle formula for cosine and double angle formula for sine )

= cos ( α β ) 1 2 ( 2 sin ( α + β ) cos ( α β ) ) =\cos(\alpha-\beta)-\frac12(2\sin(\alpha+\beta)\cos(\alpha-\beta)) (Using a sum-to-product formula )

= cos ( α β ) sin ( α + β ) cos ( α β ) =\cos(\alpha-\beta)-\sin(\alpha+\beta)\cos(\alpha-\beta)

= cos ( α β ) ( 1 sin ( α + β ) ) =\cos(\alpha-\beta)(1-\sin(\alpha+\beta))


Since both α \alpha and β \beta are between 0 0^\circ and 9 0 90^\circ , ( α β ) (\alpha-\beta) is between 9 0 -90^\circ and 9 0 90^\circ , so cos ( α β ) \cos(\alpha-\beta) is between 0 0 and 1 1 .

Since both α \alpha and β \beta are between 0 0^\circ and 9 0 90^\circ , ( α + β ) (\alpha+\beta) is between 0 0^\circ and 18 0 180^\circ , so sin ( α + β ) \sin(\alpha+\beta) is between 0 0 and 1 1 , and 1 sin ( α + β ) 1-\sin(\alpha+\beta) is also between 0 0 and 1 1 .

Two numbers between 0 0 and 1 1 multiplied together gives 1 1 , so they must be both 1 1 .


Therefore, cos ( α β ) = 1 \cos(\alpha-\beta)=1 and sin ( α + β ) = 0 \sin(\alpha+\beta)=0 , which makes α \alpha and β \beta either both 0 0^\circ or both 9 0 90^\circ .

If both are 0 0^\circ , tan γ = sin 0 cos 0 = 1 \tan\gamma=\sin0^\circ-\cos0^\circ=-1 , so it is rejected.

If both are 9 0 90^\circ , tan γ = sin 9 0 cos 9 0 = 1 \tan\gamma=\sin90^\circ-\cos90^\circ=1 , so γ = 4 5 \gamma=45^\circ .

Moderator note:

That's a very interesting solution to this problem! Thanks for sharing it!

Your solution is awesome! But just sake of variety, if we square and add the given equations, we will get t a n 2 ( γ ) + c o t 2 ( γ ) = 2 s i n ( α + β ) tan^2 (\gamma) + cot^2 (\gamma) = -2sin(\alpha+\beta) , which is easy to solve.

Harsh Shrivastava - 5 years, 9 months ago
Sarthak Behera
Nov 8, 2015

A n e a s y s o l u t i o n i s b y a d d i n g L H S a n d R H S , W e g e t s i n ( α ) + s i n ( β ) c o s ( α ) c o s ( β ) = t a n ( γ ) + c o t ( γ ) A s i m p l e a p p l i c a t i o n o f A M G M I n e q . g i v e s s i n ( α ) = s i n ( β ) = 1 c o s ( α ) = c o s ( β ) = 0 a n d t a n ( γ ) = c o t ( γ ) = 1 S o t h e a n s w e r i s 45 . An\quad easy\quad solution\quad is\quad by\quad adding\quad LHS\quad and\quad RHS,We\quad get\\ sin(\alpha )+sin(\beta )-cos(\alpha )-cos(\beta )=tan(\gamma )+cot(\gamma )\\ A\quad simple\quad application\quad of\quad AM-GM\quad Ineq.\quad gives\\ sin(\alpha )=sin(\beta )=1\quad cos(\alpha )=cos(\beta )=0\quad and\quad tan(\gamma )=cot(\gamma )=1\\ So\quad the\quad answer\quad is\quad \boxed { 45 } .\\

Moderator note:

Can you explain how you applied AM-GM? Note that α , β , γ \alpha, \beta , \gamma need not be related.

By AM-GM tan(y)+cot(y)>2 But sin(a)+sin(b)-cos(a)-cos(b) cant exceed 2... So sin(a)=sin(b)=1 and cos(a)=cos(b)=0 and tan(y)=cot(y)=1 and the result follows...

Sarthak Behera - 5 years, 6 months ago
Chew-Seong Cheong
Aug 17, 2015

{ sin α cos β = tan γ sin α cos γ cos β cos γ = sin γ . . . ( 1 ) sin β cos α = cot γ sin β sin γ cos α sin γ = cos γ . . . ( 2 ) \begin{cases} \sin{\alpha} - \cos{\beta} = \tan{\gamma} & \Rightarrow \sin{\alpha} \cos{\gamma} - \cos{\beta} \cos{\gamma} = \sin{\gamma} & ...(1) \\ \sin{\beta} - \cos{\alpha} = \cot{\gamma} & \Rightarrow \sin{\beta} \sin{\gamma} - \cos{\alpha} \sin{\gamma} = \cos{\gamma} & ...(2) \end{cases}

( 1 ) + ( 2 ) : sin ( α γ ) cos ( β + γ ) = sin γ + cos γ \begin{aligned} (1)+(2): \quad \sin{(\alpha - \gamma)} -\cos{(\beta + \gamma)} & = \sin{\gamma} + \cos{\gamma} \end{aligned}

Equating the sine and cosine terms, we have:

{ α γ = α α = 2 γ 18 0 β γ = γ β = 18 0 2 γ \begin{cases} \alpha - \gamma = \alpha & \Rightarrow \alpha = 2 \gamma \\ 180^\circ - \beta - \gamma = \gamma & \Rightarrow \beta = 180^\circ - 2 \gamma \end{cases}

( 1 ) : sin ( 2 γ ) cos ( 18 0 2 γ ) = tan γ sin ( 2 γ ) + cos ( 2 γ ) = tan γ 2 t 1 + t 2 + 1 t 2 1 + t 2 = t [ Let t = tan γ ] 2 t + 1 t 2 = t + t 3 t 3 + t 2 t 1 = 0 ( t 1 ) ( t + 1 ) 2 = 0 t = tan γ = { 1 γ = 4 5 1 0 > γ > 9 0 rejected \begin{aligned} \Rightarrow (1): \quad \sin{(2\gamma)} -\cos{(180^\circ - 2 \gamma)} & = \tan{\gamma} \\ \sin{(2\gamma)} + \cos{(2 \gamma)} & = \tan{\gamma} \\ \frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2} & = t \quad \quad \quad \small \color{#3D99F6} {[\text{Let } t = \tan{\gamma}]} \\ 2t + 1 - t^2 & = t + t^3 \\ t^3 + t^2 - t - 1 & = 0 \\ (t-1)(t+1)^2 & = 0 \\ \Rightarrow t = \tan{\gamma} & = \begin{cases} 1 & \Rightarrow \gamma = \boxed{45^\circ} \\ - 1 & \Rightarrow \color{#D61F06} {0^\circ > \gamma > 90^\circ \text{ rejected}} \end{cases} \end{aligned}

We get the same result if we equate sin ( α γ ) = cos γ \sin{(\alpha - \gamma)} = \cos{\gamma} and cos ( β + γ ) = sin γ -\cos{(\beta + \gamma)} = \sin{\gamma}

Moderator note:

You are not allowed to "equating the sine and cosine terms".

Just because sin A + cos B = sin C + cos D \sin A + \cos B = \sin C + \cos D , does not imply that A = C A = C and B = D B = D .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...