When is it a prime?

Find the sum of all integers n n (positive or negative) such that n 2 n n^2-n

is a prime .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

For any integer n n , 2 n 2 n = n ( n 1 ) 2 \mid n^2-n=n(n-1) .

So, n 2 n n^2-n is a prime only if n 2 n = 2 n = 2 , 1 n^2-n=2 \implies n=2,-1 .

For both n = 2 n=2 and n = 1 n=-1 , n 2 n = 2 n^2-n=2 , a prime.

Hence, 2 + ( 1 ) = 1 2+(-1)=\boxed{1} is the answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...