Precisely

Algebra Level 3

x 2 + x + 1 2 = x \large\left\lfloor \frac { x }{ 2 } \right\rfloor +\left\lfloor \frac { x +1 }{ 2 } \right\rfloor = \large\left\lfloor x \right\rfloor

Find the most precise solution of x x satisfying the equation above.

Notations:

For all x Z x \in \mathbb{Z} For all x R x \in \mathbb{R} For all x N x \in \mathbb{N}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Feb 23, 2017

x 2 + x + 1 2 = x x + { x } 2 + x + { x } + 1 2 = x \begin{aligned} \left \lfloor \frac x2 \right \rfloor + \left \lfloor \frac {x+1}2 \right \rfloor & = \left \lfloor x \right \rfloor \\ \implies \left \lfloor \frac {\lfloor x \rfloor + \{x\}}2 \right \rfloor + \left \lfloor \frac {\lfloor x \rfloor + \{x\}+1}2 \right \rfloor & = \left \lfloor x \right \rfloor \end{aligned}

If x \lfloor x \rfloor is odd, let x = 2 n + 1 \lfloor x \rfloor = 2n + 1 , where n Z n \in \mathbb Z . Then

x + { x } 2 + x + { x } + 1 2 = x 2 n + 1 + { x } 2 + 2 n + 1 + { x } + 1 2 = 2 n + 1 n + 1 + { x } 2 + n + 1 + { x } 2 = 2 n + 1 2 n + 1 = 2 n + 1 \begin{aligned} \left \lfloor \frac {\lfloor x \rfloor + \{x\}}2 \right \rfloor + \left \lfloor \frac {\lfloor x \rfloor + \{x\}+1}2 \right \rfloor & = \left \lfloor x \right \rfloor \\ \left \lfloor \frac {2n + 1 + \{x\}}2 \right \rfloor + \left \lfloor \frac {2n + 1 + \{x\}+1}2 \right \rfloor & = 2n+1 \\ \left \lfloor n + \frac {1 + \{x\}}2 \right \rfloor + \left \lfloor n+ 1 + \frac {\{x\}}2 \right \rfloor & = 2n+1 \\ 2n + 1 & = 2n + 1 \end{aligned}

Therefore, the equation is true for real x x , whose x \lfloor x \rfloor is odd.

If x \lfloor x \rfloor is even, let x = 2 n \lfloor x \rfloor = 2n , where n Z n \in \mathbb Z . Then

x + { x } 2 + x + { x } + 1 2 = x 2 n + { x } 2 + 2 n + { x } + 1 2 = 2 n n + { x } 2 + n + { x } + 1 2 = 2 n 2 n = 2 n \begin{aligned} \left \lfloor \frac {\lfloor x \rfloor + \{x\}}2 \right \rfloor + \left \lfloor \frac {\lfloor x \rfloor + \{x\}+1}2 \right \rfloor & = \left \lfloor x \right \rfloor \\ \left \lfloor \frac {2n + \{x\}}2 \right \rfloor + \left \lfloor \frac {2n + \{x\}+1}2 \right \rfloor & = 2n \\ \left \lfloor n + \frac {\{x\}}2 \right \rfloor + \left \lfloor n + \frac {\{x\}+1}2 \right \rfloor & = 2n \\ 2n & = 2n \end{aligned}

Therefore, the equation is true for real x x , whose x \lfloor x \rfloor is even.

Therefore, the equation is true for all x R \boxed {\text{for all } x \in \mathbb R} .

You was always there tremendous man

Ram Sita - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...