Positive Integer Solutions

Find the number of positive integral solutions ( x , y ) (x, y) to the following equation:

2 x + 3 y = 763. 2x + 3y = 763.


The answer is 127.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Nov 12, 2016

2 x + 3 y = 763 2 x = 763 3 y x = 763 3 y 2 Now, x is a positive integer, ie, 1, 2, 3, 4, ... . 763 not is divisible by 2, so only if 2 divides ’763 - 3y’ x is an integer. 763 is odd, odd - odd = even, 2 divides even, therefore 3y is odd and 3y < 763 3 y < 763 y < 254.33 1 y < 254 Using AP there are 127 odd numbers from 1 to 254. No of solutions = 127 2x + 3y = 763 \\ 2x = 763 - 3y \\ x = \dfrac{763-3y}{2} \\ \text{Now, x is a positive integer, ie, 1, 2, 3, 4, ... . 763 not is divisible by 2, so only if } \\ \text{2 divides '763 - 3y' x is an integer. 763 is odd, odd - odd = even, 2 divides even, therefore 3y is odd and 3y < 763} \\ 3y < 763 \\ y < 254.33 \\ 1 \le y < 254\\ \text{Using AP there are 127 odd numbers from 1 to 254.} \\ \boxed{\therefore \text{No of solutions = } 127}

Good job! You can probably just stop at 2x = 763 - 3y and note that the RHS must be even by definition before jumping into the odd/even part.

Jason Dyer Staff - 4 years, 7 months ago

Log in to reply

hmm yeah.. Both apply same logic tho.

Viki Zeta - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...