When sum converges

Algebra Level 4

n = 1 1 ( n + 2 ) ( n 3 + 8 + 12 n + 6 n 2 ) 4 = A B \large \sum_{n=1}^{\infty} ~ \dfrac{1}{\sqrt[]{(n+2)(n^3+8+12n+6n^2)} - 4} = \dfrac{A}{B}

where A A and B B are coprime positive integers. Find the value of B A B-A .


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Nov 5, 2016

( n + 2 ) ( n 3 + 8 + 12 n + 6 n 2 ) = ( n + 2 ) ( n + 2 ) 3 = ( n + 2 ) 2 1 ( n + 2 ) 2 4 = 1 ( n + 2 ) 2 2 2 = 1 ( n + 2 + 2 ) ( n + 2 2 ) = 1 n ( n + 4 ) ) = 1 4 × 4 n ( n + 4 ) = 1 4 ( 4 + n ) n n ( n + 4 ) = 1 4 1 n 1 n + 4 = 1 4 ( 1 1 + 1 2 + 1 3 + 1 4 + 1 5 + ( 1 5 + ) ) = 1 4 ( 1 + 1 2 + 1 3 + 1 4 ) = 1 4 ( 25 12 ) 1 ( n + 2 ) ( n 3 + 8 + 12 n + 6 n 2 ) 4 = 25 48 B A = 48 = 25 = 23 \sqrt[]{(n+2)(n^3+8+12n+6n^2)} = \sqrt[]{(n+2)(n+2)^3} = (n+2)^2 \\ \sum \dfrac{1}{(n+2)^2 - 4} = \sum \dfrac{1}{(n+2)^2 - 2^2} = \dfrac{1}{(n+2+2)(n+2-2)} = \dfrac{1}{n(n+4))} \\ = \sum \dfrac{1}{4} \times \dfrac{4}{n(n+4)} = \dfrac{1}{4} \sum \dfrac{(4 + n) - n}{n(n+4)} = \dfrac{1}{4}\sum \color{#3D99F6}{\dfrac{1}{n}} - \color{#D61F06}{\dfrac{1}{n+4}} \\ = \dfrac{1}{4} \left(\color{#3D99F6}{\dfrac{1}{1} + \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dfrac{1}{5} + \ldots} - (\color{#D61F06}{\dfrac{1}{5} + \ldots}) \right)\\ = \dfrac{1}{4}\left(1 + \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4}\right) \\ = \dfrac{1}{4}( \dfrac{25}{12}) \\ \boxed{\therefore \sum \dfrac{1}{\sqrt[]{(n+2)(n^3+8+12n+6n^2)} - 4} = \dfrac{25}{48} \\ \therefore B - A= 48 = 25 = 23}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...