When the line meets

Calculus Level 1

Without using the graph, find the number of roots of

x sin x = 3 2 , x ( 0 , π ) x \sin x = \dfrac{3}{2} , x \in (0,\pi)


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Since at x = π 2 , x sin x = π 2 > 3 2 x=\frac{π}{2}, x\sin x=\frac{π}{2}>\frac{3}{2} and in the interval ( 0 , π ) , x sin x (0,π), x\sin x is always positive, with a value 0 0 at x = π x=π , the equation x sin x = 3 2 x\sin x=\frac{3}{2} has two solutions

Solution to this problem :

Let the position coordinates of A , E , F , M A, E, F, M be ( 0 , 0 , 0 ) , ( 4 , 2 , 0 ) , ( 2 , 0 , 0 ) , ( p , q , r ) (0,0,0),(4,\sqrt 2, 0),(2,0,0),(p, q, r) respectively.

Then A M 2 = A D 2 = 16 p 2 + q 2 + r 2 = 4 2 q + 8 |\overline {AM}|^2=|\overline {AD}|^2=16\implies p^2+q^2+r^2=4\sqrt 2q+8

E M 2 = E D 2 = 2 p 2 + q 2 + r 2 = 8 p + 2 2 q 16 |\overline {EM}|^2=|\overline {ED}|^2=2\implies p^2+q^2+r^2=8p+2\sqrt 2q-16 .

M E M F p 2 + q 2 + r 2 = 6 p + 2 q 8 \vec {ME}\perp \vec {MF}\implies p^2+q^2+r^2=6p+\sqrt 2 q-8 .

Solving these we get p = 10 3 , q = 2 2 3 , r = 2 3 p=\frac{10}{3}, q=\frac{2\sqrt 2}{3}, r=\frac{2}{\sqrt 3} .

Unit vector along the normal to the A E M AEM plane is n ^ = A M × A E A M × A E \hat n=\frac{\vec {AM}\times \vec {AE}}{|\vec {AM}\times \vec {AE}|}

= 1 4 2 ( 2 2 3 i ^ + 8 3 j ^ + 2 2 k ^ ) =\frac{1}{4\sqrt 2}\left (2\sqrt {\frac{2}{3}}\hat i+\frac{8}{\sqrt 3}\hat j+2\sqrt 2\hat k\right )

If the required angle be α α , then

cos α = n ^ . k ^ = 2 2 4 2 = 1 2 α = 60 ° \cos α=\hat n. \hat k=\frac{2\sqrt 2}{4\sqrt 2}=\frac{1}{2}\implies α=\boxed {60\degree} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...