When Towers Meet Radicals

Algebra Level 3

Find largest possible integer value of a such that

2 + a 2 + a 2 + a 2 + . . . > a a a a . . . 2+\cfrac{a}{2+\cfrac{a}{2+\cfrac{a}{2+...}}}>\sqrt{a\sqrt{a\sqrt{a\sqrt{a...}}}}

This is part of the set Fun With Problem-Solving .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Donglin Loo
Jan 24, 2018

Let x = 2 + a 2 + a 2 + a 2 + . . . x=2+\cfrac{a}{2+\cfrac{a}{2+\cfrac{a}{2+...}}}

x = 2 + a x x=2+\cfrac{a}{x}

x 2 = 2 x + a x^{2}=2x+a

x 2 2 x = a x^{2}-2x=a

x 2 2 x + 1 = a + 1 x^{2}-2x+1=a+1

( x 1 ) 2 = a + 1 (x-1)^{2}=a+1

x 1 = ± a + 1 x-1=\pm\sqrt{a+1}

x = ± a + 1 + 1 x=\pm\sqrt{a+1}+1


Let y = a a a a . . . y=\sqrt{a\sqrt{a\sqrt{a\sqrt{a...}}}}

y = a a a . . . y=\sqrt{a}\cdot\sqrt{\sqrt{a}}\cdot\sqrt{\sqrt{\sqrt{a}}}...

y = a 1 2 a 1 4 a 1 8 . . . y=a^{\cfrac{1}{2}}\cdot a^{\cfrac{1}{4}}\cdot a^{\cfrac{1}{8}}\cdot ...

y = a 1 2 + 1 4 + 1 8 + . . . y=a^{\cfrac{1}{2}+\cfrac{1}{4}+\cfrac{1}{8}+...}

y = a 1 2 1 1 2 y=a^\cfrac{\cfrac{1}{2}}{1-\cfrac{1}{2}}

y = a y=a


From y y , we know that a 0 a\geq0

x > y 0 x>y\geq0

x > a 0 x>a\geq0

x > 0 x>0


When x = + a + 1 + 1 x=+\sqrt{a+1}+1 ,

+ a + 1 + 1 > 0 +\sqrt{a+1}+1>0 for a 0 1 a\geq0\geq-1


When x = a + 1 + 1 x=-\sqrt{a+1}+1 ,

a + 1 + 1 > 0 -\sqrt{a+1}+1>0

a + 1 < 1 \sqrt{a+1}<1

a + 1 < 1 a+1<1

a < 0 a<0 , which is contadictory to our claim that a 0 a\geq0 .

So, x a + 1 + 1 x\neq-\sqrt{a+1}+1


Hence, x = + a + 1 + 1 x=+\sqrt{a+1}+1

a + 1 + 1 > a \sqrt{a+1}+1>a

a + 1 > a 1 \sqrt{a+1}>a-1

There is a concern with such manipulation: If p > q p>q , p > 0 , q < 0 p>0, q<0 , but p < q |p|<|q| , then p 2 < q 2 p^{2}<q^{2} ,

However, when a > 0 a>0 , such a + 1 > a 1 |\sqrt{a+1}|>|a-1|

Therefore, we could go ahead with the manipulation with further squaring of both sides, giving

( a + 1 ) 2 > ( a 1 ) 2 (\sqrt{a+1})^{2}>(a-1)^{2}

a + 1 > a 2 2 a + 1 a+1>a^{2}-2a+1

a 2 3 a < 0 a^{2}-3a<0

a ( a 3 ) < 0 a(a-3)<0

Previously, we have shown that a 0 a\geq0 ,

So, it follows that a < 3 a<3

The largest integer value of a a which satisfies the inequality is a = 2 a=2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...