When trigonometry meets complexity

Geometry Level 3

Let a + b i a+bi be the value of sin ( i ) \sin(i) where a a and b b are real numbers.

Find a + b a+b .

Details and Assumptions

i i is the imaginary unit 1 \sqrt{-1} .


The answer is 1.17520119.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Lucas Tell Marchi
Jul 23, 2015

Our friend Kenny Lau has stated on his "extension" the method I used. I think it is nice to show how it is done. So here it goes: the Maclaurin series for the sine function calculated at i i is

sin ( i ) = i n = 0 ( 1 ) n ( 2 n + 1 ) ! i 2 n = i n = 0 ( 1 ) n ( 2 n + 1 ) ! ( 1 ) n = i n = 0 1 ( 2 n + 1 ) ! \sin(i) = i \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} i^{2n} = i \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} (-1)^{n} = i \sum_{n=0}^{\infty} \frac{1}{(2n+1)!}

But

n = 0 1 ( 2 n + 1 ) ! = sinh ( 1 ) = e e 1 2 = e 2 1 2 e \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} = \sinh(1) = \frac{e - e^{-1}}{2} = \frac{e^{2} - 1}{2e}

Then

sin ( i ) = i sinh ( 1 ) = i 2 e ( e 2 1 ) \sin(i) = i \sinh(1) = \frac{i}{2e} (e^{2} - 1)

So

a + b = sinh ( 1 ) 1.175 a + b = \sinh(1) \approx 1.175

Kenny Lau
Jul 23, 2015

Euler's formula : e i x = cos x + i sin x e^{ix}=\cos x+i\sin x

Substituting x x as i i gives: e i × i = cos i + i sin i e^{i\times i}=\cos i+i\sin i

Using the definition of i i : e 1 = cos i + i sin i ( 1 ) e^{-1}=\cos i+i\sin i\ \ -(1)

Substituting x x as i -i gives: e i × i = cos ( i ) + i sin ( i ) e^{i\times-i}=\cos(-i)+i\sin(-i)

Using the definition of i i and using some basic trigonometric identities: e 1 = cos i i sin i ( 2 ) e^{1}=\cos i-i\sin i\ \ -(2)

Subtracting ( 2 ) (2) from ( 1 ) (1) : e 1 e 1 = 2 i sin i e^{-1}-e^1=2i\sin i

Therefore: sin i = 1 2 i ( 1 e e ) = ( e 2 1 2 e ) \sin i=\frac1{2i}\left(\frac1e-e\right)=\left(\frac e2-\frac1{2e}\right)


Appendix:

Definition of i i :

  • i 2 = 1 i^2=-1 (taking only one root)

Trigonometric identities used:

  • cos ( θ ) = + cos θ \cos(-\theta)=+\cos\theta
  • sin ( θ ) = sin θ \sin(-\theta)=-\sin\theta

Extension: sin ( i x ) = i sinh ( x ) = ( e x e x 2 ) i \sin(ix)=i\sinh(x)=\left(\frac{e^x-e^{-x}}2\right)i (The proof is left as an exercise for the reader.)

same method here

Ravi Dwivedi - 5 years, 10 months ago

Log in to reply

Glad to hear!

Kenny Lau - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...