When will the holidays come 2

Calculus Level 4

0 π x sin 6 ( x ) cos 4 ( x ) d x \large \displaystyle\int_0^{\pi} x \sin^6(x) \cos^4(x) \, dx

If the integral above equals to a π 2 b \dfrac{a\pi^2}b where a a and b b are coprime integers, then find the value of a + b 5 \dfrac{a+b}{5} .


The answer is 103.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Surya Prakash
Oct 14, 2015

Using f ( a + b x ) f ( x ) f(a+b-x) \rightarrow f(x) the integral converts into

I = 0 π x sin 6 ( x ) cos 4 ( x ) d x = 0 π ( π x ) sin 6 ( x ) cos 4 ( x ) d x = π 0 π sin 6 ( x ) cos 4 ( x ) d x 0 π x sin 6 ( x ) cos 4 ( x ) d x = π 0 π sin 6 ( x ) cos 4 ( x ) d x I \begin{aligned} I &= \int_{0}^{\pi}x \sin^{6} (x) \cos ^{4} (x) dx \\ &= \int_{0}^{\pi}(\pi - x) \sin^{6} (x) \cos ^{4} (x) dx \\ &= \pi \int_{0}^{\pi} \sin^{6} (x) \cos ^{4} (x) dx - \int_{0}^{\pi}x \sin^{6} (x) \cos ^{4} (x) dx \\ &= \pi \int_{0}^{\pi} \sin^{6} (x) \cos ^{4} (x) dx - I \end{aligned}

2 I = π 0 π sin 6 ( x ) cos 4 ( x ) d x = π 0 π 2 sin 6 ( x ) cos 4 ( x ) d x + π π 2 π sin 6 ( x ) cos 4 ( x ) d x \begin{aligned} 2I &= \pi \int_{0}^{\pi} \sin^{6} (x) \cos ^{4} (x) dx \\ &= \pi \int_{0}^{\dfrac{\pi}{2}} \sin^{6} (x) \cos ^{4} (x) dx + \pi \int_{\dfrac{\pi}{2}}^{\pi} \sin^{6} (x) \cos ^{4} (x) dx \end{aligned}

Taking the substitution t = x π 2 t= x-\dfrac{\pi}{2} in the latter integral in the previous step, we get that the first and last integral in the last step are equal.

2 I = 2 π 0 π 2 sin 6 ( x ) cos 4 ( x ) d x 2I = 2 \pi \int_{0}^{\dfrac{\pi}{2}} \sin^{6} (x) \cos ^{4} (x) dx I = π 0 π 2 sin 6 ( x ) cos 4 ( x ) d x I = \pi \int_{0}^{\dfrac{\pi}{2}} \sin^{6} (x) \cos ^{4} (x) dx

Now, 1 2 B ( x , y ) = 0 π 2 sin 2 x 1 ( t ) cos 2 y 1 ( t ) d t \dfrac{1}{2} B(x,y) = \int_{0}^{\dfrac{\pi}{2}} \sin^{2x-1} (t) \cos ^{2y-1} (t) dt .

So, the above integral turns into

I = π × 1 2 × B ( 7 2 , 5 2 ) = π 2 × Γ ( 7 2 ) Γ ( 5 2 ) Γ ( 6 ) = 3 π 2 512 \begin{aligned} I &= \pi \times \dfrac{1}{2}\times B \left(\dfrac{7}{2} , \dfrac{5}{2} \right) \\ &= \dfrac{\pi}{2} \times \dfrac{\Gamma \left(\dfrac{7}{2} \right) \Gamma \left(\dfrac{5}{2}\right)}{\Gamma (6)} \\ &= \dfrac{3 \pi ^2 }{512} \end{aligned}

There is another way without using beta function can you find it out, btw nice solution !+1

Parth Lohomi - 5 years, 8 months ago

Log in to reply

Using reduction formula.

Surya Prakash - 5 years, 8 months ago

Parth there is. I did it by the conventional method of integration by parts. It took me 3.5 pages.

Aditya Kumar - 5 years, 8 months ago

Btw you can try integrating sin^n(x) cos^m(x) from 0 to pi/2 using Walli's formula,so there is no need of beta function.

0 π / 2 sin 6 ( x ) cos 4 ( x ) \dx = 5 ( 3 ) ( 1 ) ( 3 ) ( 1 ) 10 ( 8 ) ( 6 ) ( 4 ) ( 2 ) × π 2 = 3 π 512 \displaystyle\int_0^{\pi/2} \sin^6(x) \cos^4(x) \dx = \dfrac{5(3)(1)(3)(1)}{10(8)(6)(4)(2)} \times{\dfrac{\pi}{2}}= \dfrac{3\pi}{512}

Parth Lohomi - 4 years, 6 months ago

Aah! I c what mistake i made! What a fool I am! But the conventional method brought me the answer.

Aditya Kumar - 5 years, 8 months ago

In your second line why cant you just add that to the original integral I? Giving 2I = integration from 0 to pi of pi dx

Kennedy Nguyen - 5 years, 7 months ago
Shefali Sharma
Apr 23, 2019

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...