When you root your (in)equality

Algebra Level 4

k x 10 k \large -k~ \le ~ x ~ - ~10\sqrt[]{k}

Find the least value of x x which satisfies the equation for all positive real values of k k . ie k R + k \in \mathbb R^+ .


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Dec 9, 2016

k x 10 k u = k u 2 x 10 u 0 u 2 10 u + x Solving for u, at equation = 0 u = 5 ± 25 x k = 5 ± 25 x k 5 k 25 k 25 x k 25 x k 25 min(k) = 25 -k \le x - 10\sqrt[]{k} \\ u = \sqrt[]{k} \\ -u^2 \le x - 10u \\ 0 \le u^2 - 10u + x \\ \text{Solving for u, at equation = 0} \\ u = 5 \pm \sqrt[]{25 - x} \\ \sqrt[]{k} = 5 \pm \sqrt[]{25 - x} \\ \sqrt[]{k} \le 5 \\ k \le 25 \\ \sqrt[]{k} \le \sqrt[]{25 - x} \\ k \le 25 - x \\ k \le 25 \\ \color{#3D99F6}{\boxed{\therefore \text{min(k) = 25 }}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...