When your calculator doesn't help

Geometry Level 2

sin 6 3.2 5 + 3 sin 2 3.2 5 cos 2 3.2 5 + cos 6 3.2 5 = ? \large \displaystyle\sin^{6}3.25^\circ + 3\sin^{2}3.25^\circ\cos^{2}3.25^\circ + \cos^{6}3.25^\circ =\, ?

Evidently, you're not allowed to use a calculator.


The answer is 1.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let x = 3.2 5 \displaystyle x=3.25^\circ , then the expression becomes:

sin 6 x + cos 6 x + 3 sin 2 x cos 2 x \displaystyle\sin^{6}x + \cos^{6}x + 3\sin^{2}x\cos^{2}x

= [ ( sin 2 x ) 3 + ( cos 2 x ) 3 ] + 3 sin 2 x cos 2 x [(\displaystyle\sin^{2}x)^{3}+(\cos^{2}x)^{3}]+3\sin^{2}x\cos^{2}x

= ( sin 2 x + cos 2 x ) ( sin 4 x sin 2 x cos 2 x + cos 4 x ) + 3 sin 2 x cos 2 x \displaystyle(\sin^{2}x+\cos^{2}x)(\sin^{4}x-\sin^{2}x\cos^{2}x+\cos^{4}x)+3\sin^{2}x\cos^{2}x

= sin 4 x sin 2 x cos 2 x + cos 4 x + 3 sin 2 x cos 2 x \displaystyle\sin^{4}x-\sin^{2}x\cos^{2}x+\cos^{4}x+3\sin^{2}x\cos^{2}x

= sin 4 x + 2 sin 2 x cos 2 x + cos 4 x \displaystyle\sin^{4}x+2\sin^{2}x\cos^{2}x+\cos^{4}x

= ( sin 2 x ) 2 + ( cos 2 x ) 2 + 2. sin 2 x . cos 2 x \displaystyle(\sin^{2}x)^{2}+(\cos^{2}x)^{2}+2.\sin^{2}x.\cos^{2}x

= ( sin 2 x + cos 2 x ) 2 = 1 2 = 1 \displaystyle(\sin^{2}x+\cos^{2}x)^{2}=1^{2}=\boxed{1}

Hence, we find that sin 6 x + cos 6 x + 3 sin 2 x cos 2 x = 1 \displaystyle\sin^{6}x + \cos^{6}x + 3\sin^{2}x\cos^{2}x=1 for every legitimate value of x x . So, sin 6 x + cos 6 x + 3 sin 2 x cos 2 x = 1 \displaystyle\sin^{6}x + \cos^{6}x + 3\sin^{2}x\cos^{2}x=1 is rather an identity.

Haha solved it the same way.

Ashish Menon - 5 years ago

Log in to reply

Lol, I fooled many of my friends by this question. :)

Arkajyoti Banerjee - 5 years ago
Aradhya Kasera
Jul 25, 2019

We can solve it by realising a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) a^3+b^3=(a+b)(a^2-ab+b^2) where a = sin 2 ( x ) a=\sin^2(x) and b = cos 2 ( x ) b=\cos^2(x)

Chew-Seong Cheong
Nov 17, 2016

Consider the following:

( sin 2 x + cos 2 x ) 3 = 1 3 sin 6 x + 3 sin 4 x cos 2 x + 3 sin 2 x cos 4 x + cos 6 x = 1 sin 6 x + cos 6 x + 3 sin 2 x cos 2 x ( sin 2 x + cos 2 x ) = 1 sin 6 x + cos 6 x + 3 sin 2 x cos 2 x = 1 \begin{aligned} (\sin^2 x + \cos^2 x)^3 & = 1^3 \\ \sin^6 x + 3 \sin^4 x \cos^2 x + 3 \sin^2 x \cos^4 x + \cos^6 x & = 1 \\ \sin^6 x + \cos^6 x + 3 \sin^2 x \cos^2 x \ (\sin^2 x + \cos^2 x) & = 1 \\ \sin^6 x + \cos^6 x + 3 \sin^2 x \cos^2 x & = 1 \end{aligned}

Therefore, sin 6 x + cos 6 x + 3 sin 2 x cos 2 x = 1 \sin^6 x + \cos^6 x + 3 \sin^2 x \cos^2 x = \boxed{1} for all x x including 3.2 5 3.25^\circ .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...