sin 6 3 . 2 5 ∘ + 3 sin 2 3 . 2 5 ∘ cos 2 3 . 2 5 ∘ + cos 6 3 . 2 5 ∘ = ?
Evidently, you're not allowed to use a calculator.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Haha solved it the same way.
Log in to reply
Lol, I fooled many of my friends by this question. :)
We can solve it by realising a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) where a = sin 2 ( x ) and b = cos 2 ( x )
Consider the following:
( sin 2 x + cos 2 x ) 3 sin 6 x + 3 sin 4 x cos 2 x + 3 sin 2 x cos 4 x + cos 6 x sin 6 x + cos 6 x + 3 sin 2 x cos 2 x ( sin 2 x + cos 2 x ) sin 6 x + cos 6 x + 3 sin 2 x cos 2 x = 1 3 = 1 = 1 = 1
Therefore, sin 6 x + cos 6 x + 3 sin 2 x cos 2 x = 1 for all x including 3 . 2 5 ∘ .
Problem Loading...
Note Loading...
Set Loading...
Let x = 3 . 2 5 ∘ , then the expression becomes:
sin 6 x + cos 6 x + 3 sin 2 x cos 2 x
= [ ( sin 2 x ) 3 + ( cos 2 x ) 3 ] + 3 sin 2 x cos 2 x
= ( sin 2 x + cos 2 x ) ( sin 4 x − sin 2 x cos 2 x + cos 4 x ) + 3 sin 2 x cos 2 x
= sin 4 x − sin 2 x cos 2 x + cos 4 x + 3 sin 2 x cos 2 x
= sin 4 x + 2 sin 2 x cos 2 x + cos 4 x
= ( sin 2 x ) 2 + ( cos 2 x ) 2 + 2 . sin 2 x . cos 2 x
= ( sin 2 x + cos 2 x ) 2 = 1 2 = 1
Hence, we find that sin 6 x + cos 6 x + 3 sin 2 x cos 2 x = 1 for every legitimate value of x . So, sin 6 x + cos 6 x + 3 sin 2 x cos 2 x = 1 is rather an identity.