n = 1 ∑ ∞ n ζ ( 3 n ) − 1 = ln ( A π ) + π cos ( B π ) − ln ( e π C + tan ( D π ) )
In the above equation, A , B , C , D are natural numbers. Find the value of A + B + C + D .
Notation: ζ ( ⋅ ) denotes the Riemann Zeta function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
How do you know that k = 2 ∏ ∞ ( 1 − k − 3 ) = 3 π cosh ( 2 π 3 ) ?
Log in to reply
It's a standard formula.
Try deriving this: k = 2 ∏ ∞ ( 1 − k n z n ) = k = 0 ∏ n − 1 Γ ( 1 − z exp [ ( 2 π k i / n ) ] ) 1 It is useful here.
Let H ( x ) be the harmonic function, which has the following Taylor series: H ( x ) − x H ( − x ) = − k = 2 ∑ ∞ ζ ( k ) ( − x ) k − 1 = k = 2 ∑ ∞ ζ ( k ) x k Let w = 2 − 1 + − 3 . Then 1 + w + w 2 = 0 . Therefore, − x H ( − x ) − w x H ( − w x ) − w 2 x H ( − w 2 x ) − x H ( − x ) − w x H ( − w x ) − w 2 x H ( − w 2 x ) − x H ( − x ) − w x H ( − w x ) − w 2 x H ( − w 2 x ) − 1 − x 3 3 x 3 − H ( − x ) − w H ( − w x ) − w 2 H ( − w 2 x ) − 1 − x 3 3 x 2 = k = 2 ∑ ∞ ( ζ ( k ) x k + ζ ( k ) ( w x ) k + ζ ( k ) ( w 2 x ) k ) = 3 n = 1 ∑ ∞ ζ ( 3 n ) x 3 n = 3 n = 1 ∑ ∞ ( ζ ( 3 n ) − 1 ) x 3 n = n = 1 ∑ ∞ 3 ( ζ ( 3 n ) − 1 ) x 3 n − 1
Integrating both sides gives us:
ln ( − x ) ! − γ x + ln ( − w x ) ! − γ w x + ln ( − w 2 x ) ! − γ w 2 x + ln ( 1 − x 3 ) ln ( 1 − x ) ! + ln ( 1 − w x ) ! + ln ( 1 − w 2 x ) ! = n = 1 ∑ ∞ n ( ζ ( 3 n ) − 1 ) x 3 n = n = 1 ∑ ∞ n ( ζ ( 3 n ) − 1 ) x 3 n
Now substitute x = 1 :
n = 1 ∑ ∞ n ζ ( 3 n ) − 1 = ln ( ( 1 − w ) ! ( 1 − w 2 ) ! ) = ln ( ( 2 3 + − 3 ) ! ( 2 3 − − 3 ) ! ) = ln ( 2 3 + − 3 ∗ 2 1 + − 3 ∗ 2 3 − − 3 ∗ 2 1 − − 3 ) + ln ( ( 2 − 1 + − 3 ) ! ( 2 − 1 − − 3 ) ! )
Now we can use Gauss' theorem which says that ( x − 1 ) ! ( − x ) ! = π csc ( π x ) :
n = 1 ∑ ∞ n ζ ( 3 n ) − 1 n = 1 ∑ ∞ n ζ ( 3 n ) − 1 = ln ( 3 ) + ln ( π csc ( π ( 2 1 + − 3 ) ) ) = ln ( 3 π ) − ln ( cos ( 2 π − 3 ) ) = ln ( 3 π ) − ln ( cosh ( 2 π 3 ) ) = ln ( 3 π ) − ln ( 2 e 3 π / 2 e π 3 + 1 ) = ln ( 6 π ) + 2 3 π − ln ( e π 3 + 1 ) = ln ( 6 π ) + π cos ( 6 π ) − ln ( e π 3 + tan ( 4 π ) )
notice that n = 1 ∑ ∞ n ζ ( a n ) − 1 = n = 1 ∑ ∞ k = 2 ∑ ∞ n k a n 1 = − k = 2 ∑ ∞ ln ( 1 − k − a ) = − k = 2 ∑ ∞ ln ( n = 1 ∏ a ( 1 − ω n k − 1 ) ) = − ln ( k = 2 ∏ ∞ n = 1 ∏ a ( 1 − ω n k − 1 ) ) where ω is an a t h primitive root of unity. using wiestrass product Γ ( z ) 1 = z ( 1 + z ) e γ z k = 2 ∏ ∞ e − z / k ( 1 + z k − 1 ) → Γ ( z + 2 ) 1 = e γ z k = 2 ∏ ∞ e − z / k ( 1 + z k − 1 ) plugging in z = − ω , − ω 2 . . . − ω a − 1 , into the first one and z = − 1 in the second one and multiplying n = 1 ∏ a − 1 Γ ( − ω n ) 1 = ( n = 1 ∏ a − 1 − ω n ( 1 − ω n ) e γ ω n ( k = 2 ∏ ∞ e − ω n / k ( 1 − ω n k − 1 ) ) ) ( e − γ k = 2 ∏ ∞ e 1 / k ( 1 − k − 1 ) ) by using properties of roots of unity the product ends up being, namely their sums been 0 and product been ( − 1 ) a − 1 , n = 1 ∏ a − 1 Γ ( − ω n ) 1 = a n = 1 ∏ a k = 2 ∏ ∞ ( 1 − ω n k − 1 ) we can manipulate this into − ln ( n = 1 ∏ a k = 2 ∏ ∞ ( 1 − ω n k − 1 ) ) = ln ( a ) + n = 1 ∑ a − 1 ln ( Γ ( − ω n ) ) → n = 1 ∑ ∞ n ζ ( a n ) − 1 = ln ( a ) + n = 1 ∑ a − 1 ln ( Γ ( − ω n ) ) the rest is just easy plugging a = 3
Problem Loading...
Note Loading...
Set Loading...
n = 1 ∑ ∞ n ζ ( 3 n ) − 1 = n = 1 ∑ ∞ n 1 k = 2 ∑ ∞ k 3 n 1 = k = 2 ∑ ∞ n = 1 ∑ ∞ n k 3 n 1 = − k = 2 ∑ ∞ ln ( 1 − k − 3 ) = − ln ( k = 2 ∏ ∞ ( 1 − k − 3 ) ) = − ln ( 3 π cosh 2 1 π 3 ) = − ln ( 6 π e 2 1 π 3 e π 3 + 1 ) = ln ( 6 π ) + 2 1 π 3 − ln ( e π 3 + 1 ) = ln ( 6 π ) + π cos 6 1 π − ln ( e π 3 + tan 4 1 π ) making the answer 6 + 6 + 3 + 4 = 1 9 .