If the above equation holds true for positive integers and , find .
Notation : denotes the first derivative of the digamma function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let the Integral be denoted by S.
S = S 1 ∫ 0 1 1 − x 3 l n x d x − S 2 ∫ 0 1 1 − x 3 x 2 l n x d x , so that S = S 1 − S 2 .
S 1 = ∫ 0 1 1 − x 3 l n x d x . Put x 3 = t and the integral changes to ,
S 1 = ∫ 0 1 9 1 1 − t l n t t − 3 2 d t
By Integral Representation of Trigamma Function we have,
S 1 = ∫ 0 1 9 1 1 − t l n t t 3 1 − 1 d t
S 1 = 9 − ψ ( 1 ) ( 3 1 )
S 2 = ∫ 0 1 1 − x 3 x 2 l n x d x , Put 1 − x 3 = t we have then ,
S 2 = ∫ 0 1 9 1 t l n ( 1 − t ) d t
S 2 = ∫ 0 1 − 9 1 k ≥ 1 ∑ k t k − 1 d t
S 2 = − 9 k 1 k ≥ 1 ∑ [ k t k ] 0 1 = − 9 1 k ≥ 1 ∑ k 2 1 = − 9 ζ ( 2 )
S 2 = − 5 4 π 2
So we have , S = S 1 − S 2 = 5 4 π 2 − 9 ψ ( 1 ) ( 3 1 )
Answer : 2 + 5 4 + 3 + 9 = 6 8