Where did digamma come from?

Calculus Level 5

0 1 ( 1 x 2 ) ln x 1 x 3 d x = π a b ψ ( 1 ) ( 1 / c ) d \large \int _{ 0 }^{ 1 }{ \dfrac { (1-{ x }^{ 2 })\ln { x } }{ 1-{ x }^{ 3 } } \, dx } =\dfrac { { \pi }^{ a } }{ b } -\dfrac { \psi ^{ (1) }(1/c) }{ d }

If the above equation holds true for positive integers a , b , c a,b,c and d d , find a + b + c + d a+b+c+d .

Notation : ψ ( 1 ) ( ) \psi^{(1)}(\cdot) denotes the first derivative of the digamma function .


The answer is 68.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let the Integral be denoted by S.

S = 0 1 l n x 1 x 3 d x S 1 0 1 x 2 l n x 1 x 3 d x S 2 \large \displaystyle S=\underbrace{\int_{0}^{1} \frac{lnx}{1-x^3}dx}_{S_1}-\underbrace{\int_{0}^{1}\frac{x^2lnx}{1-x^3}dx}_{S_2} , so that S = S 1 S 2 S=S_1-S_2 .

S 1 = 0 1 l n x 1 x 3 d x \large \displaystyle S_1=\int_{0}^{1}\frac{lnx}{1-x^3}dx . Put x 3 = t x^3=t and the integral changes to ,

S 1 = 0 1 1 9 l n t 1 t t 2 3 d t \large \displaystyle S_1=\int_{0}^{1} \frac{1}{9} \frac{lnt}{1-t}t^{-\frac{2}{3}}dt

By Integral Representation of Trigamma Function we have,

S 1 = 0 1 1 9 l n t 1 t t 1 3 1 d t \large \displaystyle S_1 = \int_{0}^{1} \frac{1}{9} \frac{lnt}{1-t}t^{\frac{1}{3}-1}dt

S 1 = ψ ( 1 ) ( 1 3 ) 9 \large \displaystyle \boxed{S_1 =\frac{ -\psi^{(1)}(\frac{1}{3})}{9}}

S 2 = 0 1 x 2 l n x 1 x 3 d x \large \displaystyle S_2=\int_{0}^{1} \frac{x^2lnx}{1-x^3}dx , Put 1 x 3 = t 1-x^3=t we have then ,

S 2 = 0 1 1 9 l n ( 1 t ) t d t \large \displaystyle S_2=\int_{0}^{1}\frac{1}{9} \frac{ln(1-t)}{t}dt

S 2 = 0 1 1 9 k 1 t k 1 k d t \large \displaystyle S_2=\int_{0}^{1} -\frac{1}{9}\sum_{k\ge1}\frac{t^{k-1}}{k}dt

S 2 = 1 9 k k 1 [ t k k ] 0 1 = 1 9 k 1 1 k 2 = ζ ( 2 ) 9 \large \displaystyle S_2=-\frac{1}{9k}\sum_{k\ge1}[\frac{t^k}{k}]_{0}^{1} = -\frac{1}{9} \sum_{k\ge1}\frac{1}{k^2} = -\frac{\zeta(2)}{9}

S 2 = π 2 54 \large \displaystyle \boxed{S_2 = -\frac{\pi^2}{54}}

So we have , S = S 1 S 2 = π 2 54 ψ ( 1 ) ( 1 3 ) 9 \large \displaystyle S=S_1-S_2=\frac{\pi^\color{#D61F06}{2}}{\color{#3D99F6}{54}} - \frac{\psi^{(1)}(\frac{1}{\color{#456461}{3}})}{\color{#624F41}{9}}

Answer : 2 + 54 + 3 + 9 = 68 \boxed{2+54+3+9=68}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...