Let is a chord of length in a circle of radius and the tangents at and intersect at point .
Find the length of (in ).
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let O be the centre of circle and X Y intersect O C at Z . So, O Z = 8 cm .
In △ O X C , 1 0 2 + C X 2 = C O 2 = ( C Z + 8 ) 2 → 1 .
In △ C Z X , C Z 2 + 6 2 = C X 2 → 2 .
By solving 1 and 2 , C X = 7 . 5 .