Where does it approach?

Calculus Level 2

Evaluate the limit: lim x 1 x + x 2 + x 3 + + x n n x 1 \large \lim_{x\rightarrow 1}\frac{x+x^2+x^3+\cdots+x^n-n}{x-1}

n 2 n^2 n n n 2 + n n^2+n n ( n + 1 ) 2 \frac{n(n+1)}{2} n 2 + 1 n \frac{n^2+1}{n}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: L'Hopital's Rule - Basic

L = lim x 1 x + x 2 + x 3 + + x n n x 1 A 0/0 case, L’H o ˆ pital’s rule applies. = lim x 1 1 + 2 x + 3 x 2 + + n x n 1 1 Differentiate up and down w.r.t. x = 1 + 2 + 3 + + n = n ( n + 1 ) 2 \begin{aligned} L & = \lim_{x \to 1} \frac {x+x^2+x^3+\cdots + x^n - n}{x-1} & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = \lim_{x \to 1} \frac {1+2x+3x^2+\cdots + nx^{n-1}}1 & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x \\ & = 1+2+3+\cdots +n \\ & = \boxed{\dfrac {n(n+1)}2} \end{aligned}

Jason Martin
Nov 8, 2017

Use L'Hopital's Rule and you get the sum 1 + 2 + 3 + + n 1+2+3+\ldots +n , which simplifies to n ( n + 1 ) 2 \frac{n(n+1)}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...