Where does the line lie?

Geometry Level pending

C 1 : x 2 + y 2 2 x 2 y + 1 = 0 C_1:x^2+y^2-2x-2y+1=0 C 2 : x 2 + y 2 16 x 2 y + 61 = 0 C_2:x^2+y^2-16x-2y+61=0

What are the values of a so that y = 2 x + a y=2x+a lies between the two circles without touching or intersecting them?

(-2.23,10.52) (-10.52,2.23) (10.52,2.23) (-10.52,-2.23)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
May 13, 2021

Let C 1 C_{1} be ( x 1 ) 2 + ( y 1 ) 2 = 1 (x-1)^2 + (y-1)^2 = 1 and C 2 C_{2} be ( x 8 ) 2 + ( y 1 ) 2 = 4. (x-8)^2+(y-1)^2 = 4. If the line y = 2 x + a y = 2x +a is to lie between these circles without touching/intersecting either one, then it shall include all such lines except the one tangent to C 1 C_{1} in x ( 1 , 2 ) , y ( 0 , 1 ) x \in (1,2), y \in (0,1) and to C 2 C_{2} in x ( 6 , 8 ) , y ( 1 , 3 ) x \in (6,8), y \in (1,3) . This also requires the necessary condition a < 0. a < 0. If we first examine C 1 C_{1} , we obtain:

x 2 + ( 2 x + a ) 2 2 x 2 ( 2 x + a ) + 1 = 0 5 x 2 + ( 4 a 6 ) x + ( a 2 2 a + 1 ) = 0 x = ( 6 4 a ) ± ( 4 a 6 ) 2 4 ( 5 ) ( a 2 2 a + 1 ) 2 ( 5 ) = ( 6 4 a ) ± 2 a 2 2 a + 4 10 x^2 + (2x+a)^2 - 2x - 2(2x+a) + 1 = 0 \Rightarrow 5x^2 +(4a-6)x + (a^2-2a +1) =0 \Rightarrow x = \frac{(6-4a) \pm \sqrt{(4a-6)^2 - 4(5)(a^2-2a+1)}}{2(5)} =\frac{(6-4a) \pm 2\sqrt{-a^2 -2a + 4}}{10}

If the line is to be tangent to C 1 C_{1} in exactly one point, then a 2 2 a + 4 = 0 5 = ( a + 1 ) 2 a = 1 5 3.236. -a^2-2a+4 = 0 \Rightarrow 5 = (a+1)^2 \Rightarrow a = -1-\sqrt{5} \approx -3.236.

For C 2 C_{2} , we have:

x 2 + ( 2 x + a ) 2 16 x 2 ( 2 x + a ) + 61 = 0 5 x 2 + ( 4 a 20 ) x + ( a 2 2 a + 61 ) = 0 x = ( 20 4 a ) ± ( 4 a 20 ) 2 4 ( 5 ) ( a 2 2 a + 61 ) 2 ( 5 ) = ( 20 4 a ) ± 2 a 2 30 a 205 10 x^2 + (2x+a)^2 - 16x - 2(2x+a) + 61 = 0 \Rightarrow 5x^2 +(4a-20)x + (a^2-2a +61) =0 \Rightarrow x = \frac{(20-4a) \pm \sqrt{(4a-20)^2 - 4(5)(a^2-2a+61)}}{2(5)} =\frac{(20-4a) \pm 2\sqrt{-a^2 -30a -205}}{10}

If the line is to be tangent to C 2 C_{2} in exactly one point, then a 2 30 a 205 = 0 20 = ( a + 15 ) 2 a = 15 + 20 10.52. -a^2-30a - 205 = 0 \Rightarrow 20 = (a+15)^2 \Rightarrow a = -15+\sqrt{20} \approx -10.52.

Hence, the solution set includes the lines y = 2 x + a y = 2x + a with a ( 10.52 , 3.236 ) . \boxed{a \in (-10.52, -3.236)}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...