What are the values of a so that lies between the two circles without touching or intersecting them?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let C 1 be ( x − 1 ) 2 + ( y − 1 ) 2 = 1 and C 2 be ( x − 8 ) 2 + ( y − 1 ) 2 = 4 . If the line y = 2 x + a is to lie between these circles without touching/intersecting either one, then it shall include all such lines except the one tangent to C 1 in x ∈ ( 1 , 2 ) , y ∈ ( 0 , 1 ) and to C 2 in x ∈ ( 6 , 8 ) , y ∈ ( 1 , 3 ) . This also requires the necessary condition a < 0 . If we first examine C 1 , we obtain:
x 2 + ( 2 x + a ) 2 − 2 x − 2 ( 2 x + a ) + 1 = 0 ⇒ 5 x 2 + ( 4 a − 6 ) x + ( a 2 − 2 a + 1 ) = 0 ⇒ x = 2 ( 5 ) ( 6 − 4 a ) ± ( 4 a − 6 ) 2 − 4 ( 5 ) ( a 2 − 2 a + 1 ) = 1 0 ( 6 − 4 a ) ± 2 − a 2 − 2 a + 4
If the line is to be tangent to C 1 in exactly one point, then − a 2 − 2 a + 4 = 0 ⇒ 5 = ( a + 1 ) 2 ⇒ a = − 1 − 5 ≈ − 3 . 2 3 6 .
For C 2 , we have:
x 2 + ( 2 x + a ) 2 − 1 6 x − 2 ( 2 x + a ) + 6 1 = 0 ⇒ 5 x 2 + ( 4 a − 2 0 ) x + ( a 2 − 2 a + 6 1 ) = 0 ⇒ x = 2 ( 5 ) ( 2 0 − 4 a ) ± ( 4 a − 2 0 ) 2 − 4 ( 5 ) ( a 2 − 2 a + 6 1 ) = 1 0 ( 2 0 − 4 a ) ± 2 − a 2 − 3 0 a − 2 0 5
If the line is to be tangent to C 2 in exactly one point, then − a 2 − 3 0 a − 2 0 5 = 0 ⇒ 2 0 = ( a + 1 5 ) 2 ⇒ a = − 1 5 + 2 0 ≈ − 1 0 . 5 2 .
Hence, the solution set includes the lines y = 2 x + a with a ∈ ( − 1 0 . 5 2 , − 3 . 2 3 6 ) .