Where does the smallest square lie?

Geometry Level 5

The triangle depicted in the animation has side lengths of 13 13 , 14 14 and 15 15 . The area of the smallest square which has at least three of its vertices on the sides of the triangle is p q \dfrac{p}{q} , where p p and q q are relatively prime positive integers. Find p + q p+q .


The answer is 28981.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Figure 1 Figure 1 Let A B = c = 13 AB=c=13 , B C = a = 14 BC=a=14 and C A = b = 15 CA=b=15 . Denote A \angle A , B \angle B and C \angle C by α \alpha , β \beta and γ \gamma respectively.
Square K L M N KLMN has its vertices K K , L L and N N on sides A B AB , A C AC and B C BC respectively as seen in figure 1. While K K takes all possible positions on A B AB , angle θ c = A K L {{\theta }_{c}}=\angle AKL varies, with 90 α θ c β 90{}^\circ -\alpha \le {{\theta }_{c}}\le \beta . At the same time, the side length s c {{s}_{c}} of the square changes. We want to determine the minimum value s c {{s}_{c}} can take. Denote the length of segment B K BK by x x .
Using Sine Rule on A K L \triangle AKL ,

A K sin L = K L sin A c x sin ( 180 α θ c ) = s c sin a c x sin ( α + θ c ) = s c sin a ( 1 ) \frac{AK}{\sin L}=\frac{KL}{\sin A}\Rightarrow \frac{c-x}{\sin \left( 180{}^\circ -\alpha -{{\theta }_{c}} \right)}=\frac{{{s}_{c}}}{\sin a}\Rightarrow \frac{c-x}{\sin \left( \alpha +{{\theta }_{c}} \right)}=\frac{{{s}_{c}}}{\sin a} \ \ \ \ \ \ (1) Using Sine Rule on B K N \triangle BKN ,

B K sin N = K N sin B x sin ( 90 + θ β ) = s c sin β x = s c sin β cos ( β θ c ) ( 2 ) \frac{BK}{\sin N}=\frac{KN}{\sin B}\Rightarrow \frac{x}{\sin \left( 90{}^\circ +\theta -\beta \right)}=\frac{{{s}_{c}}}{\sin \beta }\Rightarrow x=\frac{{{s}_{c}}}{\sin \beta }\cos \left( \beta -{{\theta }_{c}} \right) \ \ \ \ \ \ (2) Combining ( 1 ) (1) and ( 2 ) (2) we get

s c [ sin ( α + θ c ) sin β + sin α cos ( β θ c ) ] = c sin α sin β ( 3 ) {{s}_{c}}\left[ \sin \left( \alpha +{{\theta }_{c}} \right)\sin \beta +\sin \alpha \cos \left( \beta -{{\theta }_{c}} \right) \right]=c\sin \alpha \sin \beta \ \ \ \ \ \ (3) Hence, s c {{s}_{c}} is minimised when the function f ( θ c ) = sin ( α + θ c ) sin β + sin α cos ( β θ c ) f\left( {{\theta }_{c}} \right)=\sin \left( \alpha +{{\theta }_{c}} \right)\sin \beta +\sin \alpha \cos \left( \beta -{{\theta }_{c}} \right) , 90 α θ c β 90{}^\circ -\alpha \le {{\theta }_{c}}\le \beta takes its maximum value.

Taking the derivative, f ( θ c ) = cos ( α + θ c ) sin β + sin α sin ( β θ c ) {f}'\left( {{\theta }_{c}} \right)=\cos \left( \alpha +{{\theta }_{c}} \right)\sin \beta +\sin \alpha \sin \left( \beta -{{\theta }_{c}} \right) For the critical point,

f ( θ c ) = 0 cos ( α + θ c ) sin β + sin α sin ( β θ c ) = 0 ( cos α cos θ c sin α sin θ c ) sin β + sin α ( sin β cos θ c sin θ c cos β ) = 0 sin θ c sin α ( sin β + cos β ) = cos θ c sin β ( sin α + cos α ) sin θ c cos θ c = sin β ( sin α + cos α ) sin α ( sin β + cos β ) tan θ c = sin β ( sin α + cos α ) sin α sin β sin α ( sin β + cos β ) sin α sin β tan θ c = 1 + cot α 1 + cot β \begin{aligned} {f}'\left( {{\theta }_{c}} \right)=0 & \Leftrightarrow \cos \left( \alpha +{{\theta }_{c}} \right)\sin \beta +\sin \alpha \sin \left( \beta -{{\theta }_{c}} \right)=0 \\ & \Leftrightarrow \left( \cos \alpha \cos {{\theta }_{c}}-\sin \alpha \sin {{\theta }_{c}} \right)\sin \beta +\sin \alpha \left( \sin \beta \cos {{\theta }_{c}}-\sin {{\theta }_{c}}\cos \beta \right)=0 \\ & \Leftrightarrow \sin {{\theta }_{c}}\sin \alpha \left( \sin \beta +\cos \beta \right)=\cos {{\theta }_{c}}\sin \beta \left( \sin \alpha +\cos \alpha \right) \\ & \Leftrightarrow \frac{\sin {{\theta }_{c}}}{\cos {{\theta }_{c}}}=\frac{\sin \beta \left( \sin \alpha +\cos \alpha \right)}{\sin \alpha \left( \sin \beta +\cos \beta \right)} \\ & \Leftrightarrow \tan {{\theta }_{c}}=\dfrac{\dfrac{\sin \beta \left( \sin \alpha +\cos \alpha \right)}{\sin \alpha \sin \beta }}{\dfrac{\sin \alpha \left( \sin \beta +\cos \beta \right)}{\sin \alpha \sin \beta }} \\ & \Leftrightarrow \boxed{\tan {{\theta }_{c}}=\dfrac{1+\cot \alpha }{1+\cot \beta }} \\ \end{aligned}

Thus, the only zero of the function f {f}' is at θ c = tan 1 ( 1 + cot α 1 + cot β ) {{\theta }_{c}}^{*}={{\tan }^{-1}}\left( \frac{1+\cot \alpha }{1+\cot \beta } \right) Furthermore, f ( θ c ) = sin ( α + θ c ) sin β sin α cos ( β θ c ) < 0 {f}''\left( {{\theta }_{c}} \right)=-\sin \left( \alpha +{{\theta }_{c}} \right)\sin \beta -\sin \alpha \cos \left( \beta -{{\theta }_{c}} \right)<0 for all θ c [ 90 α , β ] {{\theta }_{c}}\in \left[ 90{}^\circ -\alpha ,\ \beta \right] . This means that the function f f has a maximum at θ c {{\theta }_{c}}^{*} . Consequently, from ( 3 ) (3) we get the minimum for the side length of the square s c = c sin α sin β sin ( α + θ c ) sin β + sin α cos ( β θ c ) ( 4 ) {{s}_{c}}^{*}=\frac{c\sin \alpha \sin \beta }{\sin \left( \alpha +{{\theta }_{c}}^{*} \right)\sin \beta +\sin \alpha \cos \left( \beta -{{\theta }_{c}}^{*} \right)} \ \ \ \ \ \ (4)

In order to calculate the exact value of s c {{s}_{c}}^{*} we proceed to evaluate the trigonometric numbers of the angles of A B C \triangle ABC .


Figure 2 Figure 2 A B C \triangle ABC is a compound of a 5 5 - 12 12 - 13 13 and a 9 9 - 12 12 - 15 15 right triangle (see figure 2).

Hence, sin β = 12 13 \sin \beta =\dfrac{12}{13} , cos β = 5 13 \cos \beta =\dfrac{5}{13} , cot β = 5 12 \cot \beta =\dfrac{5}{12} , sin γ = 12 15 = 4 5 \sin \gamma =\dfrac{12}{15}=\dfrac{4}{5} , cos γ = 9 15 = 3 5 \cos \gamma =\dfrac{9}{15}=\dfrac{3}{5} , cot γ = 9 12 = 3 4 \cot \gamma =\dfrac{9}{12}=\dfrac{3}{4} .

Moreover, sin α = sin ( β + γ ) = sin β cos γ + sin γ cos γ = 56 65 \sin \alpha =\sin \left( \beta +\gamma \right)=\sin \beta \cos \gamma +\sin \gamma \cos \gamma =\dfrac{56}{65} , cos α = cos ( β + γ ) = cos β cos γ sin β sin γ = 33 65 \cos \alpha =-\cos \left( \beta +\gamma \right)=-\cos \beta \cos \gamma -\sin \beta \sin \gamma =\dfrac{33}{65} and cot α = sin α cos α = 33 56 \cot \alpha =\dfrac{\sin \alpha }{\cos \alpha }=\dfrac{33}{56} .

Using these values we find tan θ c = 1 + cot α 1 + cot β = 1 + 33 56 1 + 5 12 = 267 238 \tan {{\theta }_{c}}^{*}=\dfrac{1+\cot \alpha }{1+\cot \beta }=\dfrac{1+\dfrac{33}{56}}{1+\dfrac{5}{12}}=\dfrac{267}{238} Now, sin ( α + θ c ) = sin α cos θ c + sin θ c cos α = sin α 1 1 + tan 2 θ c + tan θ c 1 1 + tan 2 θ c cos α = 56 65 1 1 + ( 267 238 ) 2 + 267 238 1 1 + ( 267 238 ) 2 33 65 = 131 5 757 \begin{aligned} & \sin \left( \alpha +{{\theta }_{c}}^{*} \right)=\sin \alpha \cos {{\theta }_{c}}^{*}+\sin {{\theta }_{c}}^{*}\cos \alpha \\ & =\sin \alpha \cdot \dfrac{1}{\sqrt{1+{{\tan }^{2}}{{\theta }_{c}}^{*}}}+\tan {{\theta }_{c}}^{*}\cdot \dfrac{1}{\sqrt{1+{{\tan }^{2}}{{\theta }_{c}}^{*}}}\cdot \cos \alpha \\ & =\dfrac{56}{65}\cdot \dfrac{1}{\sqrt{1+{{\left( \dfrac{267}{238} \right)}^{2}}}}+\dfrac{267}{238}\cdot \dfrac{1}{\sqrt{1+{{\left( \dfrac{267}{238} \right)}^{2}}}}\cdot \dfrac{33}{65} \\ & =\dfrac{131}{5\sqrt{757}} \\ \end{aligned} And similarly, cos ( β θ c ) = 26 757 \cos \left( \beta -{{\theta }_{c}}^{*} \right)=\dfrac{26}{\sqrt{757}} .


Having all the ingredients,
( 4 ) s c = 13 56 65 12 13 131 5 757 12 13 + 56 65 26 757 = 168 757 6.1 \left( 4 \right)\Rightarrow {{s}_{c}}^{*}=\dfrac{13\cdot \dfrac{56}{65}\cdot \dfrac{12}{13}}{\dfrac{131}{5\sqrt{757}}\cdot \dfrac{12}{13}+\dfrac{56}{65}\cdot \dfrac{26}{\sqrt{757}}}=\dfrac{168}{\sqrt{757}}\approx 6.1

Thus, the area of the smallest square with one vertex on side c c and its opposite vertex moving inside the square is A = ( s c ) 2 = 28224 757 37.28 A={{\left( {{s}_{c}}^{*} \right)}^{2}}=\dfrac{28224}{757}\approx 37.28 Working similarly, we find that the smallest square with one vertex on side a a and its opposite vertex moving inside the square has area 14112 365 38.66 \dfrac{14112}{365}\approx 38.66 and the smallest square with one vertex on side b b and the opposite one moving inside the square has area 28224 701 40.26 \dfrac{28224}{701}\approx 40.26 .

Comparing the results, we know that the area of the square in question is A = 28224 757 A=\dfrac{28224}{757} .

For the answer, p + q = 28224 + 757 = 28981 p+q=28224+757=\boxed{28981} .

\ \ \

Note :

f ( θ c ) < 0 {f}''\left( {{\theta }_{c}} \right)<0 , for all θ c [ 90 α , β ] {{\theta }_{c}}\in \left[ 90{}^\circ -\alpha ,\ \beta \right] , hence f {f}' is a decreasing function. Therefore, f ( θ c ) > 0 {f}'\left( {{\theta }_{c}} \right)>0 for θ c [ 90 α , θ c ) {{\theta }_{c}}\in \left[ 90{}^\circ -\alpha ,\ {{\theta }_{c}}^{*} \right) and f ( θ c ) < 0 {f}'\left( {{\theta }_{c}} \right)<0 for θ c ( θ c , β ] {{\theta }_{c}}\in \left( {{\theta }_{c}}^{*},\ \beta \right] . Consequently, f f is increasing in [ 90 α , θ c ] \left[ 90{}^\circ -\alpha ,\ {{\theta }_{c}}^{*} \right] and decreasing in [ θ c , β ] \left[ {{\theta }_{c}}^{*},\ \beta \right] ,giving its minimum when θ c = 90 α {{\theta }_{c}}=90{}^\circ -\alpha , or θ c = β {{\theta }_{c}}=\beta .

Eventually, when the largest square occurs, all its vertices lay on the sides of the triangle. This result holds, not only for the 13 13 - 14 14 - 15 15 triangle, but for all acute triangles.

Amazing solution. How did you post an animation? I can't and support does not help me...

Valentin Duringer - 4 months, 3 weeks ago

Log in to reply

Thanks, I'm glad you liked it. I create the animation in Geogebra, then I record it from the screen using a recording tool (Camtasia Studio), so I get a MP4 file. Then, I convert it to a GIF file using an MP4-to-GIF Converter (there are many free online). You can upload to Brilliant a GIF file the way you do it for an image. The whole process is not that much comlicated as it sounds. I hope this helps.

Thanos Petropoulos - 4 months, 3 weeks ago

Log in to reply

I create more than 50 dynamic problems so yeah i tried what you did (except i used ice cream screen recorder) but the GIF file is not accepted (even tough it's a .gif extension). You'll now soon enough if i succeeded aha. I count on you to post some solutions because i don't know if i will. Thank you for your time !

Valentin Duringer - 4 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...