Where is 44 or 55?

Find the remainder when the number below is divided by 11:

45 46 47 48 49 50 5 1 . . 54 \huge {{{{{{{{45}}^{{{{{{{46}}^{{{{{{47}}^{{{{ {48}}^{{{{49}}^{{{50}}^{51^{.^{.^{54}}}}}}}}}}}}}}}}}}}}}}}}}


Do you like challenging your brain?. Enter the world where Calculators will not help


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 17, 2016

Let the number be 4 5 n 45^n , where n n is an integer .

4 5 n ( 44 + 1 ) n (mod 11) 1 n (mod 11) 1 (mod 11) \begin{aligned} 45^n & \equiv (44+1)^n \text{ (mod 11)} \\ & \equiv 1^n \text{ (mod 11)} \\ & \equiv \boxed{1} \text{ (mod 11)} \end{aligned}

I think you mean ( m o d 11 ) \pmod{11}

Sam Bealing - 4 years, 12 months ago

Log in to reply

Thanks. Silly me.

Chew-Seong Cheong - 4 years, 12 months ago

Nicely explained (+1).

Abhay Tiwari - 4 years, 12 months ago
Tommy Li
Jun 17, 2016

45 1 ( m o d 11 ) 45 \equiv 1 \pmod{11}

45 46 47 48 49 50 5 1 . . . 54 1 ( m o d 11 ) {{{{{{{{45}}^{{{{{{{46}}^{{{{{{47}}^{{{{ {48}}^{{{{49}}^{{{50}}^{51^{.^{.^{.^{54}}}}}}}}}}}}}}}}}}}}}}}}}} \equiv 1 \pmod{11}

Nice solution(+1). I am impressed that you caught the main point of the problem.

Abhay Tiwari - 4 years, 12 months ago

Log in to reply

Thanks! It is a fast way to solve the problem.

Tommy Li - 4 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...