Where is the apex?

Geometry Level 4

A tilted cone has its axis parallel to the unit vector a = ( sin θ cos ϕ , sin θ sin ϕ , cos θ ) \mathbf{a} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) , with θ = π 10 \theta = \dfrac{\pi}{10} and ϕ = 2 π 3 \phi = \dfrac{2 \pi}{3} , and has a semi-vertical angle of π 12 \dfrac{\pi}{12} . It intersects the x y xy plane at three known points: A ( 5 , 2 , 0 ) , B ( 4 , 3 , 0 ) A(5,-2,0) , B(4,3,0) and C ( 1 , 5 , 0 ) C(-1,5,0) . Determine the coordinates ( x , y , z ) (x, y, z) of the apex of the cone. There are two solutions to this problem, choose the one with the positive z z -coordinate of the apex, and report the sum of the coordinates ( x + y + z ) (x + y + z) .


The answer is 20.126.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Hosam Hajjir
Dec 18, 2018

The algebraic equation of the cone is given by ( r r 0 ) T Q ( r r 0 ) = 0 (\mathbf{r} - \mathbf{r_0} )^T Q (\mathbf{r} - \mathbf{r_0} ) = 0 , where r \mathbf{r} is coordinate vector of any point on the surface of the cone, and r 0 \mathbf{r_0} is the coordinate vector of the apex of the cone, and the 3 × 3 3 \times 3 symmetric matrix matrix Q Q is given by, Q = R D R T Q = R D R^T , with D D being a diagonal matrix, given by,

D = [ cos 2 θ c 0 0 0 cos 2 θ c 0 0 0 sin 2 θ c ] D = \begin{bmatrix} \cos^2 \theta_c && 0 && 0 \\ 0 && \cos^2 \theta_c && 0 \\ 0 && 0 && -\sin^2 \theta_c \end{bmatrix}

where θ c \theta_c is the semi-vertical angle. Matrix R R is a rotation matrix whose third column is a unit vector that points along the direction of the axis of the cone, while its first two columns are arbitrary unit vectors that form with the third column a valid orthonormal set.

Since the angle θ c \theta_c and the direction of the axis are given, then the matrix Q Q is fully specified.

Substituting the given points which lie on the surface of the cone into the equation of the cone, we obtain three equations in the unknown vector r 0 \mathbf{r_0} ,

( A r 0 ) T Q ( A r 0 ) = 0 ( 1 ) (\mathbf{A} - \mathbf{r_0} )^T Q (\mathbf{A} - \mathbf{r_0} ) = 0 \hspace{12pt} (1)

( B r 0 ) T Q ( B r 0 ) = 0 ( 2 ) (\mathbf{B} - \mathbf{r_0} )^T Q (\mathbf{B} - \mathbf{r_0} ) = 0\hspace{12pt} (2)

( C r 0 ) T Q ( C r 0 ) = 0 ( 3 ) (\mathbf{C} - \mathbf{r_0} )^T Q (\mathbf{C} - \mathbf{r_0} ) = 0 \hspace{12pt} (3)

The second of these equations, can be re-written as follows:

( ( B A ) + ( A r 0 ) ) T Q ( ( B A ) + ( A r 0 ) ) = 0 ( (\mathbf{B} - \mathbf{A}) + (\mathbf{A}- \mathbf{r_0}) )^T Q ( (\mathbf{B} - \mathbf{A}) + (\mathbf{A}- \mathbf{r_0}) ) = 0

And when expanding this, we get,

( B A ) T Q ( B A ) + 2 ( B A ) T Q ( A r 0 ) + ( A r 0 ) T Q ( A r 0 ) = 0 (\mathbf{B} - \mathbf{A} )^T Q (\mathbf{B} - \mathbf{A} ) + 2 (\mathbf{B} - \mathbf{A} )^T Q (\mathbf{A} - \mathbf{r_0} )+ (\mathbf{A} - \mathbf{r_0} )^T Q (\mathbf{A} - \mathbf{r_0} ) = 0

From equation (1), the last term in the above equation is zero, and therefore,

( B A ) T Q ( B A ) + 2 ( B A ) T Q ( A r 0 ) = 0 ( 4 ) (\mathbf{B} - \mathbf{A} )^T Q (\mathbf{B} - \mathbf{A} ) + 2 (\mathbf{B} - \mathbf{A} )^T Q (\mathbf{A} - \mathbf{r_0} ) = 0 \hspace{12pt} (4)

And in a similar fashion, the third equation can be manipulated to yield,

( C A ) T Q ( C A ) + 2 ( C A ) T Q ( A r 0 ) = 0 ( 5 ) (\mathbf{C} - \mathbf{A} )^T Q (\mathbf{C} - \mathbf{A} ) + 2 (\mathbf{C} - \mathbf{A} )^T Q (\mathbf{A} - \mathbf{r_0} ) = 0 \hspace{12pt} (5)

The last two equations are linear equations in the coordinate vector r 0 \mathbf{r_0} , and can be readily solved. The solution is of the form,

r 0 = v 0 + t v 1 ( 6 ) \mathbf{r_0} = \mathbf{v_0} + t \mathbf{v_1} \hspace{12pt} (6)

To determine the value of the parameter t t , we plug this expression into any of equations (1) - (3). Plugging it into the first equation, we obtain,

( ( A v 0 ) t v 1 ) T Q ( ( A v 0 ) t v 1 ) = 0 ( 7 ) ( (\mathbf{A}-\mathbf{v_0}) - t \mathbf{v_1} )^T Q ( (\mathbf{A}-\mathbf{v_0}) - t \mathbf{v_1} ) = 0 \hspace{12pt} (7)

This is a quadratic equation in the parameter t t , and it has two solutions, one corresponds to the apex vector r 0 \mathbf{r_0} that has a positive z z -coordinate.

David Vreken
Dec 18, 2018

If D ( x , y , z ) D(x, y, z) is the the apex of the cone, then the angle between vector a \mathbf{a} and A D \vec{AD} , the angle between vector a \mathbf{a} and B D \vec{BD} , and the angle between vector a \mathbf{a} and C D \vec{CD} must all equal the semi-vertical angle of π 12 \frac{\pi}{12} .

Using cos θ = u v u v \cos \theta = \frac{\mathbf{u} \bullet \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} with the above vectors we can obtain the following three equations:

cos π 12 = sin π 10 cos 2 π 3 ( x 5 ) + sin π 10 sin 2 π 3 ( y + 2 ) + sin π 10 z ( x 5 ) 2 + ( y + 2 ) 2 + z 2 \cos \frac{\pi}{12} = \frac{\sin \frac{\pi}{10} \cos \frac{2\pi}{3} (x - 5) + \sin \frac{\pi}{10} \sin \frac{2\pi}{3} (y + 2) + \sin \frac{\pi}{10}z}{\sqrt{(x - 5)^2 + (y + 2)^2 + z^2}}

cos π 12 = sin π 10 cos 2 π 3 ( x 4 ) + sin π 10 sin 2 π 3 ( y 3 ) + sin π 10 z ( x 4 ) 2 + ( y 3 ) 2 + z 2 \cos \frac{\pi}{12} = \frac{\sin \frac{\pi}{10} \cos \frac{2\pi}{3} (x - 4) + \sin \frac{\pi}{10} \sin \frac{2\pi}{3} (y - 3) + \sin \frac{\pi}{10}z}{\sqrt{(x - 4)^2 + (y - 3)^2 + z^2}}

cos π 12 = sin π 10 cos 2 π 3 ( x + 1 ) + sin π 10 sin 2 π 3 ( y 5 ) + sin π 10 z ( x + 1 ) 2 + ( y 5 ) 2 + z 2 \cos \frac{\pi}{12} = \frac{\sin \frac{\pi}{10} \cos \frac{2\pi}{3} (x + 1) + \sin \frac{\pi}{10} \sin \frac{2\pi}{3} (y - 5) + \sin \frac{\pi}{10}z}{\sqrt{(x + 1)^2 + (y - 5)^2 + z^2}}

which solves numerically to ( x , y , z ) ( 3.0924 , 5.2345 , 17.9836 ) (x, y, z) \approx (-3.0924, 5.2345, 17.9836) , so x + y + z 20.126 x + y + z \approx \boxed{20.126} .

Thanks for an elegant solution.

Hosam Hajjir - 2 years, 5 months ago
Steven Chase
Dec 18, 2018

Fundamental unknown quantities:

Base center coordinates = D = ( D x , D y , D z ) Base radius = R Angular parameters associated with intersections = α , β , γ \text{Base center coordinates} = \vec{D} = (D_x, D_y, D_z) \\ \text{Base radius} = R \\ \text{Angular parameters associated with intersections} = \alpha, \beta, \gamma

Processing:
Axial vector = a Pair of additional unit vectors to make mutually orthogonal set = f , g semi-vertical angle = sva Cone height = h = R t a n ( s v a ) Apex location = E = D + h a Base edge point #1 = F = D + R c o s α f + R s i n α g Base edge point #2 = G = D + R c o s β f + R s i n β g Base edge point #3 = H = D + R c o s γ f + R s i n γ g Vector #1 from edge to apex = v F = E F Vector #2 from edge to apex = v G = E G Vector #3 from edge to apex = v H = E H Vector weight for xy intersection #1: F z + σ F v F z = 0 σ F = F z v F z Vector weight for xy intersection #2: G z + σ G v G z = 0 σ G = G z v G z Vector weight for xy intersection #3: H z + σ H v H z = 0 σ H = H z v H z xy intersection #1: I F = F + σ F v F xy intersection #2: I G = G + σ G v G xy intersection #3: I H = H + σ H v H Distance to known intersection point #1 = Δ A = A I F Distance to known intersection point #2 = Δ B = B I G Distance to known intersection point #3 = Δ C = C I H \text{Axial vector} = \vec{a} \\ \text{Pair of additional unit vectors to make mutually orthogonal set} = \vec{f}, \vec{g} \\ \text{semi-vertical angle} = \text{sva} \\ \text{Cone height} = h = \frac{R}{tan(sva)} \\ \text{Apex location} = \vec{E} = \vec{D} + h \, \vec{a} \\ \text{Base edge point \#1} = \vec{F} = \vec{D} + R \, cos \alpha \, \vec{f} + R \, sin \alpha \, \vec{g} \\ \text{Base edge point \#2} = \vec{G} = \vec{D} + R \, cos \beta \, \vec{f} + R \, sin \beta \, \vec{g} \\ \text{Base edge point \#3} = \vec{H} = \vec{D} + R \, cos \gamma \, \vec{f} + R \, sin \gamma \, \vec{g} \\ \text{Vector \#1 from edge to apex} = \vec{v_F} = \vec{E} - \vec{F} \\ \text{Vector \#2 from edge to apex} = \vec{v_G} = \vec{E} - \vec{G} \\ \text{Vector \#3 from edge to apex} = \vec{v_H} = \vec{E} - \vec{H} \\ \text{Vector weight for xy intersection \#1:} \,\,\,\, F_z + \sigma_F \, v_{Fz} = 0 \implies \sigma_F = -\frac{F_z}{v_{Fz}} \\ \text{Vector weight for xy intersection \#2:} \,\,\,\, G_z + \sigma_G \, v_{Gz} = 0 \implies \sigma_G = -\frac{G_z}{v_{Gz}} \\ \text{Vector weight for xy intersection \#3:} \,\,\,\, H_z + \sigma_H \, v_{Hz} = 0 \implies \sigma_H = -\frac{H_z}{v_{Hz}} \\ \text{xy intersection \#1:} \,\,\,\, \vec{IF} = \vec{F} + \sigma_F \, \vec{v_F} \\ \text{xy intersection \#2:} \,\,\,\, \vec{IG} = \vec{G} + \sigma_G \, \vec{v_G} \\ \text{xy intersection \#3:} \,\,\,\, \vec{IH} = \vec{H} + \sigma_H \, \vec{v_H} \\ \text{Distance to known intersection point \#1} = \Delta A = |\vec{A} - \vec{IF}| \\ \text{Distance to known intersection point \#2} = \Delta B = |\vec{B} - \vec{IG}| \\ \text{Distance to known intersection point \#3} = \Delta C = |\vec{C} - \vec{IH}|

Performance Criterion: Δ A + Δ B + Δ C = 0 \Delta A + \Delta B + \Delta C = 0

Solve for the set of fundamental unknowns so that the performance criterion is satisfied. Doing so results in:

Apex coordinates = E ( 3.093 , 5.234 , 17.983 ) \text{Apex coordinates} = \vec{E} \approx (-3.093,5.234,17.983)

Thanks for a great solution. I will present my solution method soon.

Hosam Hajjir - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...