Where's my Telescope?

Algebra Level 4

S = 1 1 × 2 + 1 3 × 4 + 1 5 × 6 + + 1 99 × 100 T = 1 51 × 100 + 1 52 × 99 + 1 53 × 98 + + 1 100 × 51 \begin{aligned} S & = \frac 1{1\times 2} +\frac 1{3\times 4} +\frac 1{5\times 6} + \cdots + \frac 1{99\times 100} \\ T & = \frac 1{51\times 100} + \frac 1{52\times 99 } + \frac 1{53\times 98} + \cdots + \frac 1{100\times 51} \end{aligned}

If S T = p q \dfrac ST = \dfrac pq , where p p and q q are coprime positive integers. Find p + q p+q .


The answer is 153.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 19, 2016

S = 1 1 × 2 + 1 3 × 4 + 1 5 × 6 + + 1 99 × 100 = 1 1 1 2 + 1 3 1 4 + 1 5 1 6 + + 1 99 1 100 = 1 1 + 1 2 + 1 3 + + 1 100 2 ( 1 2 + 1 4 + 1 6 + + 1 100 ) = 1 1 + 1 2 + 1 3 + + 1 100 ( 1 1 + 1 2 + 1 3 + + 1 50 ) = 1 51 + 1 52 + 1 53 + + 1 100 \begin{aligned} S & = \color{#3D99F6}{\frac 1{1\times 2}} + \color{#D61F06}{\frac 1{3\times 4}} + \color{#3D99F6}{\frac 1{5\times 6}} + \cdots + \color{#D61F06}{\frac 1{99\times 100}} \\ & = \color{#3D99F6}{\frac 11- \frac 12} + \color{#D61F06}{\frac 13- \frac 14} + \color{#3D99F6}{\frac 15 - \frac 16} + \cdots + \color{#D61F06}{\frac 1{99} - \frac 1{100}} \\ & = \frac 11 + \frac 12 + \frac 13 + \cdots + \frac 1{100} - 2\left(\frac 12 + \frac 14 + \frac 16 + \cdots + \frac 1{100} \right) \\ & = \frac 11 + \frac 12 + \frac 13 + \cdots + \frac 1{100} - \left(\frac 11 + \frac 12 + \frac 13 + \cdots + \frac 1{50} \right) \\ & = \frac 1{51} + \frac 1{52} + \frac 1{53} + \cdots + \frac 1{100} \end{aligned}

T = 1 51 × 100 + 1 52 × 99 + 1 53 × 98 + + 1 98 × 53 + 1 99 × 52 + 1 100 × 51 = 2 51 × 100 + 1 52 × 99 + 1 53 × 98 + + 2 75 × 76 = 2 151 ( 1 51 + 1 100 + 1 52 + 1 99 + 1 53 + 1 98 + + 1 75 + 1 76 ) = 2 151 ( 1 51 + 1 52 + 1 53 + + 1 100 ) = 2 151 S \begin{aligned} T & = \frac 1{51 \times 100} + \color{#3D99F6}{\frac 1{52 \times 99}} + \color{#D61F06}{\frac 1{53 \times 98}} + \cdots + \color{#D61F06}{\frac 1{98 \times 53}} + \color{#3D99F6}{\frac 1{99 \times 52}} + \frac 1{100 \times 51} \\ & = \frac 2{51 \times 100} + \color{#3D99F6}{\frac 1{52 \times 99}} + \color{#D61F06}{\frac 1{53 \times 98}} + \cdots + \frac 2{75 \times 76} \\ & = \frac 2{151}\left(\frac 1{51} + \frac 1{100} + \color{#3D99F6}{\frac 1{52} + \frac 1{99}} + \color{#D61F06}{\frac 1{53} + \frac 1{98}} + \cdots + \frac 1{75} + \frac 1{76} \right) \\ & = \frac 2{151}\left(\frac 1{51} + \frac 1{52} + \frac 1{53} + \cdots + \frac 1{100} \right) \\ & = \frac 2{151} S \end{aligned}

S T = 151 2 p + q = 151 + 2 = 153 \implies \dfrac ST = \dfrac {151}2 \implies p+q = 151 + 2 = \boxed{153}

Aditya Dhawan
Sep 19, 2016

S = k = 1 50 1 ( 2 k ) ( 2 k 1 ) = k = 1 50 1 2 k 1 1 2 k = k = 1 100 1 k k = 1 50 1 k T = k = 1 50 1 ( 50 + k ) ( 101 k ) = 1 151 k = 1 50 1 50 + k + 1 101 k = 2 151 k = 1 50 1 50 + k = 2 151 { k = 1 100 1 k k = 1 50 1 k } S T = 151 2 S=\quad \sum _{ k=1 }^{ 50 }{ \frac { 1 }{ (2k)(2k-1) } } =\quad \sum _{ k=1 }^{ 50 }{ \frac { 1 }{ 2k-1 } } -\quad \frac { 1 }{ 2k } =\quad \sum _{ k=1 }^{ 100 }{ \frac { 1 }{ k } } -\sum _{ k=1 }^{ 50 }{ \frac { 1 }{ k } } \\ \\ T=\quad \sum _{ k=1 }^{ 50 }{ \frac { 1 }{ (50+k)(101-k) } } =\frac { 1 }{ 151 } \sum _{ k=1 }^{ 50 }{ \frac { 1 }{ 50+k } } +\quad \frac { 1 }{ 101-k } \\ =\quad \frac { 2 }{ 151 } \sum _{ k=1 }^{ 50 }{ \frac { 1 }{ 50+k } } \\ =\frac { 2 }{ 151 } \left\{ { \sum _{ k=1 }^{ 100 }{ \frac { 1 }{ k } -\sum _{ k=1 }^{ 50 }{ \frac { 1 }{ k } } } } \right\} \\ \therefore \quad \frac { S }{ T } =\quad \frac { 151 }{ 2 }

Your second terms for T T , 1 52 × 101 \dfrac 1{52 \times 101} is wrong. I will edit for you. You should also use three starting terms.

Chew-Seong Cheong - 4 years, 9 months ago

Log in to reply

Indeed. I have made the corrections. Thank you

Aditya Dhawan - 4 years, 9 months ago

Its not a 5 level question.

Priyanshu Mishra - 4 years, 8 months ago

Log in to reply

I have not marked the level.

Aditya Dhawan - 4 years, 8 months ago

Log in to reply

I am not saying to you. I have just said it without any complain.

Priyanshu Mishra - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...