Where's the missing x x ?

Let x x , y y and z z be positive integers that satisfy

x y + y z + z = 10 \large xy+yz+z=10

What is the number of ordered solutions ( x , y , z ) (x,y,z) to the equation above?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 13, 2017

First let us consider the ranges of y y and z z . Note that y y is maximum when x = z = 1 x=z=1 , then y + y + 1 = 10 y+y+1=10 , 1 y 4 \implies 1 \le y \le 4 . Similarly, z z is maximum, when x = y = 1 x=y=1 and 1 + z + z = 10 1+z+z = 10 , again 1 z 4 1 \le z \le 4 . Then we have:

x y + y z + z = 10 x = 10 z y z \begin{aligned} xy + yz + z & = 10 \\ \implies x & = \frac {10-z}y - z \end{aligned}

We note that x x is an integer only when 10 z y \dfrac {10-z}y is an integer or y 10 z y\mid 10-z . Therefore,

When y = 1 y=1 , possible z = { 1 2 3 4 z = \begin{cases} 1 \\ 2 \\3 \\ 4 \end{cases} and x = { 8 6 4 2 \implies x = \begin{cases} 8 \\ 6 \\ 4 \\ 2 \end{cases} and solutions: { ( 8 , 1 , 1 ) ( 6 , 1 , 2 ) ( 4 , 1 , 3 ) ( 2 , 1 , 4 ) \begin{cases} (8,1,1) \\ (6,1,2) \\ (4,1,3) \\ (2,1,4) \end{cases}

When y = 2 y=2 , possible z = { 2 4 z = \begin{cases} 2 \\ 4 \end{cases} and x = { 2 1 \implies x = \begin{cases} 2 \\ \color{#D61F06} -1 \end{cases} and solution: ( 2 , 2 , 2 ) (2,2,2)

When y = 3 y=3 , possible z = { 1 4 z = \begin{cases} 1 \\ 4 \end{cases} and x = { 2 2 \implies x = \begin{cases} 2 \\ \color{#D61F06} -2 \end{cases} and solution: ( 2 , 3 , 2 ) (2,3,2)

When y = 4 y=4 , possible z = 2 z = 2 and x = 0 \implies x = \color{#D61F06} 0 ; there is no solution.

Therefore, there are 6 \boxed{6} solutions.

Kelvin Hong
Jul 13, 2017

Noted that x 1 x \geq 1 and y 1 y \geq 1

So

x y + y z + z 1 + z + z xy+yz+z\geq 1+z+z

2 z + 1 10 2z+1\leq 10

z 4.5 z\leq 4.5

z = 1 , 2 , 3 , 4 z=1,2,3,4

Rewrite equation give us

y = 10 z x + z y=\frac{10-z}{x+z}

When z = 1 z=1 ,

y = 9 x + 1 y=\frac{9}{x+1} leads to two answers ( 2 , 3 , 1 ) (2,3,1) , ( 8 , 1 , 1 ) (8,1,1) .

When z = 2 z=2 ,

y = 8 x + 2 y=\frac{8}{x+2} leads to two answers ( 2 , 2 , 2 ) (2,2,2) , ( 6 , 1 , 2 ) (6,1,2) .

When z = 3 z=3 ,

y = 7 x + 3 y=\frac{7}{x+3} leads to the only answer ( 4 , 1 , 3 ) (4,1,3) .

When z = 4 z=4 ,

y = 6 x + 4 y=\frac{6}{x+4} leads to the only answer ( 2 , 1 , 4 ) (2,1,4) .

So, there are 6 \boxed{6} solutions.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...